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Abstract

Light has provided the means to learn and gather information about the physical

world throughout history. In a world where science moves to smaller scales and more

specialised problems however, the boundaries of current technology are continually

challenged, motivating the search for more sophisticated systems providing greater

information content, sensitivity and increased dimensionality. Utilising the vecto-

rial nature of light presents a promising avenue by which to meet these growing

requirements. Polarisation can, for example, be used to transmit information, or

alternatively, changes in polarisation induced by an object allow study of previously

neglected material properties, such as birefringence and diattenuation.

Central to this thesis is thus the characterisation and exploitation of the oppor-

tunities afforded by the electromagnetic (i.e. vectorial) nature of light. To this end

the work follows three running themes: quantification of polarisation information;

formulation of simple propagation tools for electromagnetic waves; and development

of specific polarisation based optical systems.

Characterising the informational limits inherent to polarisation based systems

reduces to considering the uncertainty present in any observations. Uncertainty

can, for example, arise from stochastic variation in the polarisation state being

measured, or from random noise perturbations upon detection. Both factors are

considered and quantified here.

Development of vectorial optical systems does, however, pose significant difficul-

ties in modelling, due to mathematical complexity and computational requirements.

A number of new tools are hence developed, as prove applicable to a wide variety

of applications. Examples are naturally given.

To illustrate the potential of polarisation based systems, specific current topics

are discussed; namely the growing demand for data storage, and single molecule

studies. It will be shown that polarisation, can not only be used to multiplex

information in data pits on optical media, but also to allow full 3D study of single

molecules. Factors pertinent to such studies are studied in detail.
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Chapter 1

Introduction

Science is facts; just as houses are made of stones, so is
science made of facts; but a pile of stones is not a house
and a collection of facts is not necessarily science.

J. Henri Poincaré

1.1 Motivation and aims

Light, or rather optics, has provided the means to learn and gather information

about the physical world throughout history. The inexorable march of science and

technology, has for example, seen the development of the telescope, microscope,

camera, optical fibre and laser, to mention but a few. In a world where science

moves to ever smaller scales and more specialised problems however, the boundaries

of current technology are continually challenged, motivating the search for more so-

phisticated systems providing greater information content, sensitivity and increased

dimensionality.

Traditionally, such advances arise from new or refined theories and techniques,

as exemplified by the success of quantum optics. Quantum optics has, for example,

facilitated resolution gains in imaging by means of squeezed light, or more exotically,

allowed so-called “ghost imaging” in which entangled photons are used to image an
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object indirectly (see [170] for a short review).

Alternatively, utilising previously neglected, or by introducing additional, de-

grees of freedom can allow further progress. Spectroscopic studies, for instance,

inherently possess additional information carrying channels in the form of multiple

wavelengths and are hence frequently conducted. Full electromagnetic treatments

of optical systems are also often eschewed in favour of simpler scalar methods yet

the vectorial nature of light need not be considered a hindrance, but instead can

be viewed as affording the additional dimensionality sought. Despite the associated

modelling and mathematical complexities, polarisation represents a promising can-

didate for the solution of a number of current problems. This thesis is therefore

dedicated to exploring the capabilities and opportunities afforded by polarised light.

Development of polarisation based optical systems can pose significant difficulties

in modelling. Vectorial propagation, using for instance the Stratton-Chu integral

[269] or a Green’s tensor formulation [292], are frequently cumbersome in both a

mathematical and computational respect. One objective of the research detailed in

this thesis thus strives to mitigate such modelling burdens, whilst also attempting to

gain an understanding of the behaviour and properties of polarised light in optical

systems. The tools and physical insight gained will prove applicable to optical data

storage, lithography, microscopy and many other fields [72, 74, 252].

Whilst the polarisation state of light itself, can be used to transmit informa-

tion, hence presenting new possibilities in communications and optical data storage,

changes in polarisation induced by an object can, alternatively, be used to expose

new material or sample properties to scientific scrutiny, such as the orientation of

fluorescent molecules [70]. Studies of this nature however necessitate detection ar-

chitectures from which the polarisation state of light can be found. Polarimetry is a

mature field [7], nevertheless, as with all empirical data, measurements are inevitably

corrupted by the presence of noise and other unknown perturbations. Fundamen-

tally the resulting uncertainty sets a limit on the achievable accuracy and hence the

obtainable information. Quantification of these performance limits is important not

only for the comparison of alternative detection schemes, but also for their refine-

ment and optimisation. So doing hence allows the potential of polarisation based

systems to be fully exploited, and therefore constitutes a further objective of this
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research.

Conventional metrics, such as signal to noise ratios and resolution, are unfor-

tunately less appropriate in a polarisation domain, since they refer to irradiance

measurements. Informatic and statistical principles, e.g. maximum likelihood esti-

mators [245], which adopt a more task specific perspective, will hence be applied.

The generality afforded by an information based approach will be seen to permit ap-

plication to a large array of different polarisation based systems, intended for quite

disparate purposes, but also allow the incorporation of any a priori knowledge with

regards to the system into optimisation routines [71].

General formulations, although invaluable, do not immediately reveal potential

technological advances. A final goal of this thesis is hence to examine current prob-

lems which can be addressed using polarised light. Polarisation microscopy, for

example, represents the natural fusion of existing imaging techniques with polarisa-

tion based measurements and is one example that will be considered. Furthermore

the need to store and transport vast volumes of data is growing. Optical data storage

(ODS) has become a well established solution, however conventional means by which

to further increase storage capacity are reaching their limits. A polarisation based

multiplexed optical data storage solution in which multiple bits can be encoded into

a single data pit will hence be examined and optimised.

As a final example, attention is given to single molecule studies, in which po-

larisation can play an important role, e.g. for orientational measurements. Such

studies can for example have distinct noise properties, which must be considered to

achieve high accuracy measurements [73]. Furthermore, whilst current techniques

are limited to measurement of the transverse orientation, a new system is presented

in which longitudinal measurements can be made, hence opening the way to 3D

polarimetry and the additional information such studies can provide.

Ultimately it is hoped that the work presented in this thesis provides an insight

into the capabilities and advances afforded by a number of specific polarisation

based optical systems. Although exhaustive examination of all such systems lies far

beyond the scope of this work, the tools and techniques also developed herein are

intended to be applicable to the modelling and analysis of alternative problems.
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1.2 Thesis structure and overview

Chapters 2 and 3 provide an introduction to key concepts taken from probability,

information and estimation theory which will be routinely used throughout this the-

sis. Such principles are important in describing and parameterising noise present in

an optical system which fundamentally limits the information obtainable in mea-

surement and parameter inference. Key estimation routines, such as maximum

likelihood and Bayesian estimation will hence be discussed, allowing precision limits

to be defined and studied quantitatively.

Chapter 4 continues by providing a theoretical introduction to vectorial optics,

starting first with a short discussion of Maxwell’s equations. Numerous alternative

descriptions of polarised light are subsequently presented, again due to their common

use during the course of this work. Such discussions will naturally lead to Jones and

Mueller calculus: tools which are invaluable for vectorial ray tracing (an extension

of the more familiar scalar ray tracing methods), in turn aiding analysis of complex

optical systems. Finally, due to the ubiquity of lenses in modern day optics the

chapter concludes with a discussion of the scaled Debye-Wolf integral, which can be

used to describe the focusing of polarised light under a wide range of circumstances.

In particular a new formalism by which spatially inhomogeneous partially coherent,

partially polarised light can be focused is detailed and illustrated by a number of

important numerical examples.

Chapter 5 considers the theories of Chapters 2–4 and applies them to the field of

polarimetry. Polarimetry aims at measuring the state of polarisation of light and/or

the polarisation changing properties of a sample. This chapter considers both types

of polarimetry and gives a framework within which the measurement systems can be

optimised, accounting for signal dependent noise and incorporation of any a priori

information that may be held. The optimisation procedure is highlighted by means

of a number of examples, before discussion of how the algorithm can be extended to

more complex inference problems is given. In particular the chapter concludes with

a discussion of noise propagation in the ever-popular Lu-Chipman decomposition

[169].

Chapter 6 extends the ideas of Chapter 5 by considering the growing field of
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polarisation microscopy. In an attempt to improve the imaging performance of

polarisation microscopes an eigenfunction analysis of focusing by a high numerical

aperture lens is derived and applied to a number of inverse problems of significance

in microscopy, such as superresolution. Issues pertaining to this inversion procedure

are also fully discussed. Consideration is further given to system performance and

potential crosstalk when imaging single or multiple dipole sources. Finally, since

modal analysis of optical systems does not necessarily ensure physicality, in the

sense that basis modes do not satisfy Maxwell’s equations, the question as to how

such physical constraints can be built into the estimation procedure and the potential

accuracy improvements evaluated.

Having developed a number of general informational theories and tools in the

earlier part of this thesis, Chapters 7 and 8 consider two specific systems. Chapter 7

considers a novel optical data storage system in which polarisation encoding is used

to store large volumes of data on a single optical disc. In particular the system will

be fully modelled including the scattering of polarised light from the disc surface.

Numerical simulations allow the data pit dimensions to be optimised and results in

this vein are given.

Chapter 8 on the other hand considers polarisation based single molecule exper-

iments. In this context a specific noise model is developed accounting for random

orientational changes of molecules which may arise. Finally a novel system capable

of measuring the full three-dimensional orientation of single molecules in real time

is introduced. This is in contrast to existing systems, which measure the transverse

orientation only. Key tolerances of the system are also discussed.

Finally in Chapter 9 the main results and ideas of this thesis are collated and

discussed. Opportunities for further work and areas of development are also high-

lighted.
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Chapter 2

Fundamentals of probability

theory

The scientist has a lot of experience with ignorance
and doubt and uncertainty, and this experience is of
very great importance, I think.

Richard P. Feynman

Probability is a concept familiar to the vast majority of readers on an intuitive

level, however in a stricter sense it is generally poorly understood. A substantial

fraction of this thesis draws ideas and tools from the rigorous theories of probability

and thus it is apt to provide a fuller account of the rudimentary mathematical

principles. This chapter does not aim to give an exhaustive exposition of probability

theory (fuller discussion can be found in many existing texts, such as [5, 63, 121,

123, 159]), but instead particular attention is given to the meaning of randomness,

whereby a suitable parameterisation of the statistics involved can be formulated.

Ultimately, it is the uncertainty so described which, in its various forms, simul-

taneously allows “information” to be gained from observations of a system, yet also

limits the confidence held in those observations [245, 247, 248, 304]. An under-

standing of the ideas presented here will therefore prove invaluable later, not only

for describing many electromagnetic sources which are inherently stochastic (see
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Chapters 4 and 8), but also when considering bounds in optical systems (Chapters

3–6), and how to overcome these limits (Chapters 5–7). Finally, this chapter serves

as a platform from which to establish the mathematical notation which will be used

throughout this text.

2.1 Random variables

2.1.1 Specifying a random variable

2.1.1.1 Cumulative and probability distribution functions

Central to probability theory are the notions of random experiments and random

variables. The former, defined as an experiment in which the result varies even

when performed under identical conditions, can not be described using deterministic

principles. Instead a probability is ascribed to each possible outcome, describing

the relative frequency with which they occur1. A random variable X can then be

rigorously defined as a quantity for which a real number x is assigned dependent on

the outcome of a random experiment according to a fixed, deterministic rule. Based

upon an experiment in which the number of photons are counted on two different

detectors, for example, it is possible to define an assortment of different random

variables such as the sum or difference of the photon counts measured. It should be

noted that, as has been indicated here, uppercase letters will be used to denote a

random variable, whilst the lowercase counterpart indicates a particular value taken

by that variable.

Specification of random variables, both fully and approximately, serves as an

important first step in many statistical problems. Discrete random variables can be

fully specified by the denumeration of all possible values in conjunction with the

associated probabilities, pX(x) = p(X = x), or relative frequency (0 ≤ pX(x) ≤ 1).

Continuous variables, for example the length of time between arrivals of photons

at a detector, however can not be described in this way. Instead the probability,

1Although relative frequency, defined as f = limN→∞ n/N , where n is the number of occurrences
of a particular outcome in N repetitions of the random experiment, is perhaps the most intuitive
manner in which to define probabilities, an axiomatic definition as first formulated by Kolmogorov
[147, 148], is sometimes preferred since there is no guarantee that this limit exists.
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FX(x), that the random variable lies below a given value, i.e. X ≤ x, can be given

for all possible values of x. FX(x) is known as the cumulative distribution function

(CDF) of the random variable X. It should be apparent that a discrete random

variable can also be fully described using a CDF.

Using the CDF it is further possible to calculate the probability that the value

of a random variable lies within a given range, say between x and x+ δx, according

to

p(x < X ≤ x+ δx) = FX(x+ δx)− FX(x) , (2.1)

or alternatively the average “density” of probability within this range

p(x < X ≤ x+ δx)

δx
=
FX(x+ δx)− FX(x)

δx
. (2.2)

Taking the limit of an infinitesimal range, i.e. δx → 0, yields an alternative repre-

sentation of a random variable, known as a probability density/distribution function

(PDF) viz.

fX(x) = lim
δx→0

[
FX(x+ δx)− FX(x)

δx

]
=
dFX(x)

dx
. (2.3)

Probability density functions provide a much more useful specification of a random

variable and it will be seen that further reference to CDFs will be limited. By

way of comparison Figure 2.1 shows the CDF and PDF for two types of random

variables that will be important in this work, namely a (continuous) Gaussian and

(discrete) Poisson random variable (see Section 2.3 for a fuller introduction to these

variables). With reference to Figure 2.1 it should be noted that defining a PDF

for discrete random variables requires the introduction of the Dirac delta function,

denoted δ(x− x0), whereby

fX(x) =
∑
j

pX(xj)δ(x− xj) , (2.4)

where xj denotes the possible discrete values of X.
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Figure 2.1: CDFs (left) and PDFs (right) for a Poisson random variable (blue) with a
mean and variance of 3.5, and a Gaussian random variable (green) with a mean of 8 and
variance of 5.5.

2.1.1.2 Characteristic functions and moments of a random variable

Frequently Fourier analysis can afford both insight and computational advantages

when considering complex systems. Such a statement can also be made when consid-

ering statistical problems, especially when considering sums of independent random

variables in which the requisite convolution of PDFs reduces to a simple product

[63]. Motivated by these potential advantages consider the Fourier transform of a

PDF fX(x) defined by

F [fX(x)] = ΦX(ω) =

∫ ∞
−∞

fX(x) exp(iωx)dx , (2.5)

= E [exp(iωX)] , (2.6)

commonly known as the characteristic function of X. Eq. (2.6) gives an alternative

interpretation of the characteristic function as the expected value, denoted E[· · · ],
of a function of X, namely exp(iωX), in which ω is viewed as a free parameter. A

power series expansion of the exponential term yields

ΦX(ω) =

∫ ∞
−∞

fX(x)

[
1 + iωx+

(iωx)2

2!
+ · · ·+ (iωx)n

n!
+ · · ·

]
dx , (2.7)

= 1 + iωE[X] +
(iω)2

2!
E[X2] + · · ·+ (iω)n

n!
E[Xn] + · · · , (2.8)
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where it has been assumed that the order of summation and integration can be

interchanged (requiring all terms to be finite and convergence of the resulting series

[89]). The expectation

E[Xn] =

∫ ∞
−∞

xnfX(x)dx (2.9)

is known as the nth order moment of X and from Eq. (2.7) it can be seen that

given knowledge of the infinite set of moments of a random variable it is possible to

calculate the PDF and hence completely describe the random variable.

Practically speaking it is unfeasible to calculate the full set of nth order moments,

however knowledge of the first few orders can prove useful in parameterising the

salient properties. Of particular interest are the first and second order moments,

E[X] and E[X2]. The former, also known as the arithmetic mean, describes the

central value about which the random variable X varies, whilst the latter can be

used to calculate the spread of variation, or variance, about the mean value via

VAR[X] = E[(X − E[X])2] = E[X2]− E[X]2 . (2.10)

The variance is sometimes also called the second order centered moment of the

random variable X. Higher order centered moments can be defined in an analogous

way, providing an alternative parameterisation.

The mean and variance of a random variable are particularly important pa-

rameters partly because Gaussian random variables are widespread in physics, as

follows from the Central Limit Theorem (see Section 2.3). Owing to their symme-

try, Gaussian random variables are fully specified with knowledge of only the first

two moments and hence are often used as a good first order approximation in many

problems.

In closing, it is important to mention that although the above analysis has been

performed in terms of a Fourier transform of the PDF, for discrete random variables

a z-transform as defined by

Z[pX(x)] = GX(z) =
∞∑
x=0

pX(x)zx = E[zX ] (2.11)
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is more appropriate, whilst for positive valued random variables the Laplace trans-

form defined by

L[fX(x)] = X∗(s) =

∫ ∞
0

fX(x) exp(−sx)dx = E[exp(−sx)] (2.12)

should be used [159].

2.1.2 Functions of a random variable

Mathematical transformations are regularly applied to random variables. A suitable

characterisation of the resulting variable, which is itself also random then often

becomes necessary. If the random variable Y is defined via the transformation

Y = g(X) it is possible to calculate the CDF and PDF of Y from those specifying

X. To illustrate how this can be done, consider an arbitrary nonlinear function

y = g(x) as shown in Figure 2.2. From this figure it can be seen that if Y lies in

the range y < Y ≤ y + δy it is equivalent to the untransformed variable X having

a value in the range x1 < X ≤ x1 + δx1 or x2 < X ≤ x2 + δx2. The probabilities of

these two equivalent events occurring can be found approximately using Eqs. (2.2)

and (2.3) and are given by

p(y < Y ≤ y + δy) ≈ fY (y)δy (2.13)

and

p ({x1 < X ≤ x1 + δx1} ∪ {x2 < X ≤ x2 + δx2}) ≈ fX(x1)δx1 + fX(x2)δx2 (2.14)

respectively, where ∪ denotes the union of two sets. Since the two events are equiva-

lent the probabilities must be equal. Equating Eqs. (2.14) and (2.13) and performing

the limiting process, δy → 0, such that the approximate expressions become exact,

therefore yields the desired result

fY (y) =
∑
k

fX(x)

|dy/dx|

∣∣∣∣
x=xk

, (2.15)

where xk are the solutions to the equation y = g(x).
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x1 x2x + δx1 1 x + δx2 2

y
y + δy

y = g(x)

Figure 2.2: The equivalent event for y ≤ Y ≤ y+ δy under the arbitrary transformation
y = g(x) is shown to be x1 < X ≤ x1 + δx1 or x2 < X ≤ x2 + δx2.

2.1.3 Multiple random variables

Analysis of random behaviour in a practical system frequently requires dealing with

multiple random variables. This is for example vital in image processing, wherein

the intensity recorded on each pixel of a charge-coupled device (CCD) is subject

to different noise during the image capture process and hence requires a multivari-

ate approach, see for example [50, 286]. Depending on the noise source, noise in

neighbouring pixels may exhibit some degree of dependence on each other and it

is furthermore important to be able to quantify such properties. It is these issues

which are addressed in this section.

2.1.3.1 Joint, conditional and marginal distribution functions

LettingX1, X2, . . ., Xn denote a collection of n random variables it is a simple matter

to extend the results of Sections 2.1.1 and 2.1.2 to describe their joint behaviour.

In doing so it will be convenient to collect all random variables together to form a

vector random variable denoted X = (X1, X2, . . . , Xn). The joint CDF, FX(x) =

FX(x1, x2, . . . , xn), can then be defined as the probability that X ≤ x where the
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inequality holds elementwise, i.e. {X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn}. Furthermore

the joint PDF can be defined analogously to Eq. (2.3) as

fX(x) =
∂nFX(x)

∂x1∂x2 . . . ∂xn
. (2.16)

The random behaviour of a single random variable, say Xj, in isolation may

however still be of interest. In essence, this means considering the probability of

Xj adopting a particular value xj irrespective of the values of all other random

variables Xk, where k 6= j. Since by construction xk must adopt a value in the

range −∞ < xk ≤ ∞ the marginal CDF of Xj, which fully specifies the statistics of

Xj alone, is given by FXj(xj) = FX(∞, . . . , xj, . . . ,∞). By differentiation, a set of

marginal PDFs can also be found, which are given by

fXj(xj) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

fX(x′1, . . . , xj, . . . , x
′
n)dx′1 . . . dx

′
j−1dx

′
j+1 . . . dx

′
n . (2.17)

A final distribution function which proves useful in multivariate problems is

the conditional CDF and/or PDF. A conditional probability describes the relative

frequency of a particular event occurring given that some condition is known to be

satisfied. For example, in a noisy binary communication channel either a logical

0 or 1 are transmitted, however the receiver is subject to random noise, meaning

the raw detected signal can assume a continuous range of values. In this case the

probability that the transmitted message was a 0 (or a 1) given the raw recorded

data is of interest [1].

The conditional probability, p(B|A), of an event B occurring given that an event

A has occurred can be shown, via a relative frequency argument [89], to obey the

relation

p(A,B) = p(B|A)p(A) , (2.18)

where p(A,B) and p(B|A) are the joint and conditional probabilities respectively.

Using Eq. (2.18) conditional PDFs can be derived, for example the conditional PDF
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of Xn given the values of X1, X2, . . . Xn−1, is given by

fXn(xn|x1, x2, . . . , xn−1) =
fX1,X2,...,Xn(x1, x2, . . . , xn)

fX1,X2,...,Xn−1(x1, x2, . . . , xn−1)
. (2.19)

Eq. (2.19) can be iterated to give an alternative expression for the joint PDF

fX(x) = fXn(xn|x1, . . . , xn−1)fXn−1(xn−1|x1, . . . , xn−2) . . . fX2(x2|x1)fX1(x1) .

(2.20)

Finally it remains to consider functions of multiple random variables. The analog

to Eq. (2.15) is all that is required, which is given by

fY(y) =
fX(h1(y), h2(y), . . . , hn(y))

|J(x)|
, (2.21)

where Y1 = g1(X), Y2 = g2(X), . . . , Yn = gn(X) and

x1 = h1(y), x2 = h2(y), . . . xn = hn(y), (2.22)

are the unique solutions to the set of equations

y1 = g1(x), y2 = g2(x), . . . yn = gn(x), (2.23)

and |J(x)| is the determinant of the Jacobian,

J(x) =


∂g1
∂x1

· · · ∂g1
∂xn

...
. . .

...

∂gn
∂x1

· · · ∂gn
∂xn

 , (2.24)

of the transformation. This result can be derived using a multi-dimensional exten-

sion to the proof of Section 2.1.2 [159].

2.1.3.2 Cross-correlation matrices and statistical independence

In Section 2.1.1.2 the concept of (centered) moments of a random variable was

introduced, with particular emphasis given to the first and second order moments.

Whilst for a single random variable it was found to be important to parameterise the
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extent of variation, it can frequently be equally important to describe how closely the

variations in one random variable X1 follow those of another X2 as can be described

by the second order joint moment (correlation), defined as

COR[X1, X2] = E [X1X2] , (2.25)

or the second order centered joint moment (covariance)

COV[X1, X2] = E [(X1 − E[X1])(X2 − E[X2])] . (2.26)

For zero mean random variables the correlation and covariance are equivalent and

so these terms will often be used interchangeably throughout this work when ap-

propriate. Variance and covariance properties of multiple random variables can

conveniently be combined into a cross-correlation or covariance matrix defined re-

spectively as

C = E[XXT ] , (2.27)

K = E[(X− E[X])(X− E[X])T ] , (2.28)

where T denotes matrix transposition. The jth diagonal term of the correlation

(or covariance) matrix gives the second order moment (variance) of Xj, whilst the

{j, k}th off diagonal element describes the correlation (covariance) between Xj and

Xk.

Covariance of two variables describes the extent to which there is a linear de-

pendence between their values, however a zero covariance does not imply that there

is no relationship. A stricter requirement on two random variables is that of sta-

tistical independence, which demands that the conditional PDF of Xj given Xk be

functionally invariant to Xk i.e. fXj(xj|xk) = fXj(xj). As a result it is possible to

give conditions for two or more random variables X1, X2, . . . , Xn to be independent

[159], namely

FX(x) =
n∏
k=1

FXk(xk) for all x . (2.29)

46



2.1 Random variables

For discrete and continuous random variables this can be expressed in the form

pX(x) =
∏n

k=1 pXk(xk) and fX(x) =
∏n

k=1 fXk(xk) respectively, for all x. Such

criteria can prove useful in identifying when variables can be considered separately

and in gaining insight into inherent performance trade-offs in physical systems which

may exist. An example of this will be presented in Chapter 5.

2.1.3.3 Complex random variables

Hitherto discussion has been limited to real valued random variables, however in

electromagnetism and optics many stochastic quantities, such as the electric field

vector, are complex valued and as such it is necessary to consider how to math-

ematically describe these cases. Fortunately the essential tools require no further

development since, if it is noted that a single complex valued random variable has

two degrees of freedom, results pertaining to multiple random variables can be ap-

plied. There are a number of alternatives approaches in the literature [89, 293] as

to which degrees of freedom to treat as random variables. One option is to treat

the real and imaginary parts as two random variables. Specification of a complex,

random variable X = U + iV can then be achieved, for example, by provision of

the joint PDF of its real and imaginary parts fX(x) = fU,V(u,v). Depending on

the problem at hand, it may however be more convenient to use the modulus and

argument (amplitude and phase) of X or alternatively X and its complex conjugate

X∗.

Characterisation of complex random variables is again afforded by correlation

and covariance matrices, however these can now be defined in two ways. Firstly, if

considering the real and imaginary part of the complex vector random variable as

two distinct vector random variables, and defining a new real vector random variable

(U,V) the correlation and covariance matrices are defined as per Eqs. (2.27) and

(2.28) (similarly if considering the amplitude and phase). Alternatively complex

matrices can be defined (under an assumption of circularity [89]) according to

C = E[XX†] , (2.30)

K = E[(X− E[X])(X− E[X])†] , (2.31)
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where † denotes the Hermitian adjoint operation. These complex forms of the corre-

lation and covariance matrices are smaller in dimension than the former definition,

yet via considering their real and imaginary parts contain the same parameterisation

of a complex random variable and are hence often preferred, see e.g. [139].

2.2 Random processes

Random variables need not be limited to a single scalar (or vector) quantity, but

could feasibly be a function of both space and time, whereby they are designated as a

random, or stochastic, process. An illustrative example is that of imaging laser light

scattered from a rough surface. Due to the spatial variations in optical path length

seen by different scattered parts of the laser beam the scattered distribution exhibits

strong spatial intensity fluctuations, known as a speckle pattern [89]. Furthermore,

if the scattered light is passed through a time varying element, such as a turbulent

medium the speckle pattern is seen to vary in time [108], due to the changes in effec-

tive refractive index and hence optical path length through the medium. Although,

given an exact surface profile and knowledge of the spatial and velocity distributions

of particles comprising the turbulent media, it would be possible to deterministi-

cally calculate the scattered field/intensity distribution as a function of space and

time, a statistical approach is often used to achieve a phenomenological description.

Such an approach is justified since it is unlikely that any two surfaces will have the

same topology or that two media will have the same particulate distributions. That

said it should not be thought that statistical approaches are only used in optical

fields to overcome ignorance of the exact configuration, since many processes, such

as the spontaneous emission of photons by excited atoms, are inherently random.

Accordingly this section considers the specification and parameterisation of random

processes.

2.2.1 Specifying a random process

A random process U(r, t) can be completely specified by cataloguing all the possible

sample functions u(r, t) (also known as realisations) and the associated probabili-

ties with which they occur. Here r and t denote spatial and temporal coordinates
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respectively. Once again it is highly impractical to specify a random process by

enumerating all possible realisations, and may in fact be impossible if the realisa-

tions can not be written in a functional form. An alternative specification is offered

by the full set of kth order joint PDFs fU(u1, . . . ,uk; r1, . . . , rk; t1, . . . , tk), where uj

is a sample of the complex vector random process U(r, t) at position rj and time

tj. Characterisation of the significant statistical behaviour of a random process can

however often be adequately described using only the first and second order joint

PDFs and henceforth consideration will only be given to these.

2.2.2 Stationarity and ergodicity

Much of deterministic physics examines steady state solutions of systems. Similarly

in statistical physics the vast majority of work considers random processes whose

properties do not vary in time. Such random processes are termed (strictly) sta-

tionary, which formally implies that all kth order joint PDFs are invariant under

arbitrary shifts in time, τ , i.e.

fU(u1, . . . ,uk; r1, . . . , rk; t1, . . . , tk) = fU(u1, . . . ,uk; r1, . . . , rk; t1 − τ, . . . , tk − τ) ,

(2.32)

for all τ . As a result the first order PDF is independent of time, whilst the second

order PDF, depends only on the time difference τ = t1 − t2 between sample points.

Consequently the mean,

E[U(r, t)] = µ(r) , (2.33)

is independent of time, whilst the correlation and covariance matrices given by the

moments

COR[U(r1, t1),U(r2, t2)] = E[U(r1, t1)U†(r2, t2)] = C(r1, r2, τ) , (2.34)

COV[U(r1, t1),U(r2, t2)] = E[{U(r1, t1)− µ(r1)}{U(r2, t2)− µ(r2)}†] ,

= K(r1, r2, τ) , (2.35)
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are functions of τ for all t1 and t2. The (on) off diagonal terms of these matrices are

frequently termed (auto-) cross-correlations and covariances respectively.

Since specification of the infinite set of joint PDFs is not possible, it is equally

difficult to establish the stationarity of a random process in general. That said, it is

commonly possible to determine whether the conditions given by Eqs. (2.33)–(2.35)

are satisfied. If they do hold for a random process then that process is said to be

wide-sense stationary (WSS). Any strictly stationary process is automatically WSS,

however wide-sense stationarity does not imply strict stationarity.

Common reference is often made in the literature to ergodic random processes

and to conclude this section it is worthwhile defining this class of processes. An

ergodic process can be defined as a random process for which any temporal average

derived from a realisation of that process is the same as the ensemble average of the

same quantity, i.e.

〈g(U)〉 = lim
T→∞

1

T

∫ T/2

−T/2
g[u(t)]dt =

∫ ∞
−∞

g(u)fU(u)du = E[U ] . (2.36)

From this definition it can be seen that the ergodic class of random processes is a

subset of the class of strictly stationary random processes, as illustrated in Figure 2.3.

Whilst this definition of ergodicity is common in statistical optics literature (see e.g.

Ergodic

Strictly stationary

Wide-sense stationary

Random processes

Figure 2.3: Classes of random processes. Figure based on Figure (3.4) of [89].
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[89]), ergodic theory constitutes a large body of research from which alternative,

more general definitions and theorems originate [165].

2.2.3 Spectral analysis of a random process

Random processes have thus far been discussed in a space-time domain, however

motivated by the spectral methods commonly used in electromagnetism and other

physical theories, it is constructive to consider a space-frequency description instead.

This will prove necessary for example in Chapter 4 where coherent optical methods

valid for quasi-monochromatic light only are extended to describe partially coherent

systems. Initially consideration will be restricted to WSS processes, however some

closing remarks will be made with regards to the relaxation of this assertion.

Spectral analysis of random processes can be performed by taking the Fourier

transform of each realisation, however care must be taken since the Fourier transform

of a general function need not exist. This is especially true when considering a

realisation of a WSS random process, since by virtue of its stationarity the function

does not decay to zero as t→ ±∞ and thus is not square integrable. Expressed more

physically this means each realisation taken over all time possesses infinite energy.

Consequently, performing a spectral analysis of a random process requires a more

formal mathematical framework. This was provided by Wiener and Khintchine in

the form of generalised harmonic analysis and stochastic Fourier-Stieltjes integrals

[141, 314]. A more heuristic description of their solution in terms of integrated

spectra can be found in [175]. Using the theories of Wiener and Khintchine, a

rigorous meaning can be given to the Fourier integral

ũ(r, ω) = F [u(r, t)] =

∫ ∞
−∞

u(r, t) exp(iωt)dt , (2.37)

allowing all previous results to be expressed in the frequency domain. Eq. (2.37)

must still however be used with caution, since convergence of the associated integral

is not guaranteed, e.g. the phase in a white noise random process does not converge

over an infinite time interval. Convergence will be assumed henceforth. Of particular
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importance is the correlation function

COR[Ũ(r1, ω1), Ũ(r2, ω2)] =

∫ ∞
−∞

∫ ∞
−∞

E[U(r1, t1)U†(r2, t2)]ei(ω1t1−ω2t2)dt1dt2 ,

(2.38)

where the order of integration and expectation have been switched. Wide-sense

stationarity of the process, via Eq. (2.34), gives

COR[Ũ(r1, ω1), Ũ(r2, ω2)] =

∫ ∞
−∞

∫ ∞
−∞

C(r1, r2, τ)ei(ω1−ω2)t2e−iω1τdt2dτ , (2.39)

where τ = t1 − t2. The integral over t2 can be evaluated analytically and gives the

Dirac delta function
∫∞
−∞ exp(iωt)dt = δ(ω) thus yielding

COR[Ũ(r1, ω1), Ũ(r2, ω2)] = W(r1, r2, ω1)δ(ω1 − ω2) , (2.40)

where

W(r1, r2, ω) = COR[Ũ(r1, ω), Ũ(r2, ω)] =

∫ ∞
−∞

C(r1, r2, τ)e−iωτdτ (2.41)

is known as the cross-spectral density matrix (CSDM), which describes the corre-

lation between harmonic components of the two complex vector random processes

U(r1, t) and U(r2, t). If evaluated at the same spatial location (r1 = r2) Eq. (2.41)

is called the Wiener-Khintchine theorem [175] and states that the spectral (power)

density matrix W(r, r, ω) and the auto-correlation matrix C(r, r, τ) form a Fourier

transform pair.

Finally for completeness a word should be given to the consequences of relaxing

the assumption of a WSS process. In this case defining the concept of a spectrum

proves problematic, however the dominant approach in the literature is to define

time varying spectra by performing a time-windowed stationary analysis. This for

example includes the Wigner-Ville, Weyl and generalised evolutionary spectra (see

e.g. [112, 178, 181, 228]). Such a case will however not be considered further in this

work.
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2.3 Some important types of statistics

A variety of different random variables and processes will be employed in the course

of this work. So as to avoid the need to introduce each when required this task is

performed here preemptively. Table 2.1 summarises the properties of all types of

random variable that will be needed, however detailed discussion is also given here

to Poisson and Gaussian random variables and their associated processes, due to

their preeminence in later work.

2.3.1 Poisson statistics

Poisson random variables occur frequently in physics when counting the number of

occurrences of a “rare” event of interest N . Particularly pertinent to this thesis

Variable Sample Probability/PDF Mean Variance
type space E[X] VAR[X]

Bernoulli x = {0, 1} pX(x) =

{
1− p x = 0
p x = 1

p p(1− p)

Uniform x ∈ [a, b] fX(x) =

{
1
b−a a ≤ x ≤ b

0 otherwise
a+b

2
(b−a)2

12

Exponential x ∈ [0,∞] fX(x) =

{
0 x < 0

Re−Rx x ≥ 0
1
R

1
R2

Poisson x ∈ Z+
0 pX(x) = αx

x!
e−α α α

Gaussian x ∈ [−∞,∞] fX(x) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
µ σ2

Table 2.1: Summary of the properties of some types of random variables used during the
course of this text.
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is the example of counting the number of classical photons incident onto a single

photon detector within a fixed time interval. To derive the probability of observing

n events in the fixed time interval [t, t + τ ], denoted pN(n; t, t + τ) a number of

assumptions must be made. The derivation given here closely follows that of [89]

however alternative proofs can be found in [76, 167, 174]. Firstly, it must be assumed

that for a very short time interval, δt, the probability of a single instantaneous event

occurring is given by the product Rδt where R is called the rate i.e. pN(1; t, t+δt) =

Rδt. Meanwhile, it is further asserted that during the interval δt the probability of

two events occurring is negligible such that pN(0; t, t + δt) = 1 − Rδt. It is these

assumptions which are responsible for what is commonly referred to as the law of rare

events [121]. This law asserts that for a large number of sequential Bernoulli trials

(see Table 2.1) in which the chance of success (as denoted by occurrence of 1) is low,

the number of successes is a random variable approximately governed by Poisson

statistics. Finally, the number of impulse events occurring in non-overlapping time

intervals is assumed to be statistically independent2.

Consider now the probability of observing n events in the interval t+τ to t+τ+δτ .

Since δτ is assumed small there are only two ways in which n events are registered:

there are n occurrences in the interval [t, t + τ ] and zero in [t + τ, t + τ + δτ ] or

alternatively there are n−1 occurrences in the interval [t, t+ τ ] and one in [t+ τ, t+

τ + δτ ]. Hence from the assertion of statistical independence and Eq. (2.29)

pN(n; t, t+ τ + δτ) = pN(n; t, t+ τ)pN(0; t+ τ, t+ τ + δτ)

+ pN(n− 1; t, t+ τ)pN(1; t+ τ, t+ τ + δτ) ,

= pN(n; t, t+ τ)(1−Rδτ) + pN(n− 1; t, t+ τ)Rδτ . (2.42)

Routine algebraic manipulation then yields

pN(n; t, t+ τ + δτ)− pN(n; t, t+ τ)

δτ
= R [pN(n− 1; t, t+ τ)− pN(n; t, t+ τ)] ,

(2.43)

2If this assumption of independence between disjoint time intervals is relaxed one enters the
domain of quantum light sources, which possess different photon statistics. For example photon
number state sources [76] emit a single photon at very precisely defined regular times.
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or in the limit δτ → 0

∂pN(n; t, t+ τ)

∂τ
= R [pN(n− 1; t, t+ τ)− pN(n; t, t+ τ)] , (2.44)

which holds for all n. As such Eq. (2.44) defines a family of differential equations.

For n = 0 this reads

∂pN(0; t, t+ τ)

∂τ
= −RpN(0; t, t+ τ) , (2.45)

since n ≥ 0, which, with the boundary condition pN(0; t, t) = 1, can be solved

immediately via standard methods (see e.g. [16]) to give pN(0; t, t+τ) = exp(−Rτ).

Via an inductive proof it then follows that

pN(n; t, t+ τ) =
(Rτ)n

n!
exp(−Rτ) . (2.46)

With a view to future requirement, it is useful to note a result pertaining to the

sum of two (or more) independent Poisson variables. Specifically, since a Poisson

random variable fundamentally arises from counting, the statistics of the sum of

counting multiple variables are not changed, except the rate at which events occur

increases. More mathematical rigour can be accorded to this statement [159] however

this is omitted here for brevity.

Closely related to the Poisson random variable is the Poisson impulse process.

Were a time trace taken of, for example, the voltage on a photomultiplier tube, a

series of impulse peaks would be seen, with each possible time trace constituting a

realisation. Conceivably the rate may also itself be a function of time, in which case

the solution to the family of differential equations requires slight modification. Such

a case was considered in for example [89, 175] in which case the resulting PDF takes

the form

pN(n; t, t+ τ) =
(
∫ t+τ
t
R(t′)dt′)n

n!
exp

(
−
∫ t+τ

t

R(t′)dt′
)
. (2.47)

where R(t) denotes the instantaneous rate. The integral term can be interpreted as

a total average number of events during the interval of interest and can be written in
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the form 〈R(t)〉ττ , where 〈R(t)〉τ is the time averaged rate over the interval [t, t+τ ].

This result will be required and further developed when considering a time varying

system in Chapter 8.

2.3.2 Gaussian statistics

Whilst Poisson random variables encapsulate the statistics for rare events, it can

be argued that Gaussian random variables describe the statistics when there are

a large number of events. Poisson statistics arose from the sum of independent

Bernouilli random variables, whereas Gaussian statistics arise from the sum of a

large number of independent, identically distributed random variables3, a result

known as the Central Limit Theorem [123]. To prove this claim4, let Sn be the sum

of n independent, identically distributed random variables Xj with mean E[Xj] = µ

and variance VAR[Xj] = σ2. A rescaling is applied such that a new random variable

Zn is defined as

Zn =
Sn − nµ
σ
√
n

=
1

σ
√
n

n∑
j=0

(Xj − µ) , (2.48)

such that E[Zn] = 0 and VAR[Zn] = 1. It is hence implicitly assumed that µ and

σ2 are finite. As foreseen in Section 2.1.1.2 it is easier to consider the characteristic

function of Zn, viz.

ΦZn(ω) = E [exp(iωZn)] , (2.49)

= E

[
exp

(
iω

σ
√
n

n∑
j=0

(Xj − µ)

)]
, (2.50)

= E

[
n∏
j=0

exp

(
iω

σ
√
n

(Xj − µ)

)]
. (2.51)

Since the random variables Xj are independent, the order of multiplication and

expectation can be reversed. Furthermore, for identically distributed variables the

3It would therefore be expected that a Poisson random variable with a large mean would be
well approximated by a Gaussian random variable, a result that is born out in practise.

4It should be noted that the derivation given is not strictly rigorous since it only proves con-
vergence of the partition function exp[iωZn]. The reader is directed to [165] for a fuller treatment.
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expectation is the same for all j, such that

ΦZn(ω) =

{
E

[
exp

(
iω

1

σ
√
n

(Xj − µ)

)]}n
. (2.52)

Again applying a power series expansion of the exponential term yields

E

[
exp

(
iω

σ
√
n

(Xj − µ)

)]
= 1 +

(iω)2

2nσ2
E
[
(X − µ)2

]
+O

(
1

n3/2

)
, (2.53)

where E[X−µ] = 0 has also been used. Assuming the third order central moment is

finite, the latter terms can be neglected for large n in comparison to the ω2/n term.

Substituting Eq. (2.53) into Eq. (2.52) and taking the limit n→∞ then gives

ΦZ∞ = lim
n→∞

ΦZn(ω) = lim
n→∞

{
1− ω2

2n

}
, (2.54)

= exp

(
−ω

2

2

)
, (2.55)

which is the characteristic function of a Gaussian random variable with zero mean

and unit variance. Via the transformation theory presented in Section 2.1.2 it is

possible to show that the PDF of Sn is also a Gaussian random variable with mean

nµ and variance nσ2.

In view of the definition of a single Gaussian random variable it is possible to

define jointly complex Gaussian random variables X, for which the joint PDF is

given by [139]

fX(x) =
1

πn|K|
exp

(
−(x− µ)†K−1(x− µ)

)
, (2.56)

where E[X] = µ and K−1 is the inverse of the covariance matrix.

The generality of the assumptions made in the preceding derivation accounts for

the ubiquity of Gaussian random variables in nature. For the same reasons Gaussian

processes, in which sample values taken of the process at different times are jointly

Gaussian, are equally pervasive.
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2.4 Conclusions

Throughout the course of this chapter many of the fundamental principles of prob-

ability theory have been reviewed. Emphasis has been placed on how random vari-

ables and processes can be defined and metrics to parameterise their behaviour.

Although a complete description of stochastic systems is theoretically possible, it

was seen to be frequently impractical. As a result approximate descriptions in terms

of the first and second order moments were explored. The former describes the aver-

age behaviour of the system, and regularly proves meaningful when considering for

example, noise perturbed systems, since it furnishes a description of the noise-free

limit. The latter meanwhile gives a measure of the uncertainty present and hence,

as will be discussed in the next chapter, the performance bounds of those same sys-

tems. Consequently, when studying more specific vectorial optical systems, such as

polarisation state analysers or imaging systems, the ideas presented in this and the

following chapter will be routinely required.
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Chapter 3

Information and estimation theory

A likely impossibility is always preferable to
an unconvincing possibility.

Aristotle

3.1 Introduction

Shannon’s seminal paper of 1948 [247] is popularly seen as the cornerstone of in-

formation theory. Arguably Shannon’s paper addressed a significant problem of

the age, namely the scientific quantification of the rather abstract concept of infor-

mation. Despite numerous earlier works, predominantly by Nyquist, Küpfmüller,

Gabor, and Hartley [81, 102, 150, 208], each fundamentally failed in a number of

ways. Foremost of these deficiencies is that no rigorous treatment was given to

the role of noise, although its importance was noted by both Nyquist and Hartley.

Noise is an essential component to information transfer because random, and hence

unpredictable, perturbations to an information carrying signal ultimately prohibit

exact determination of the original signal or its implicit meaning. The probabilistic

treatment of Shannon (and later contributors [233, 287, 306]) allowed the stochas-

tic nature of noise to be considered in a concise and rigorous fashion, and thus a

definition for information was born.
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Shannon information (as this definition is now universally known) presents a

measure of the statistical dependence of the input and output of an information

channel, and hence presents a characterisation of the channel itself. By Shannon’s

own admission, his theories, although proving the existence of strategies by which

the full capabilities of an information channel can be achieved, provide no means

by which to determine how to do so. Furthermore, no regard is given as to how

an observer, having received an ambiguous, noisy signal, can optimally extract the

desired information; such is the domain of statistical detection, inference and esti-

mation theory.

Optimality is patently a subjective notion and hence a multitude of metric func-

tions, and associated estimation strategies, can be found in the literature. Frequently

encountered are those of maximum entropy, minimum mean square error and max-

imum likelihood estimators (MLEs), to mention but a few (see for example [139]

or [245]). Notably the first of these aims to select the signal which would provide

the maximum, average, Shannon information (or entropy). Within estimation the-

ory however a new definition of information emerges, namely Fisher information,

which quantifies the performance of an ideal observer in estimating an original sig-

nal, given a noise corrupted version. Shannon and Fisher information share many

properties, such as additivity [80], although they quantify distinct aspects of the in-

formation transmission process. Asymptotic relations between Shannon information

and Fisher information have however been established [32, 134], whilst stochastic

signals have also been considered in a so called Fisher-Shannon information plane

[297]. Despite these relations and similarities, Shannon information will be con-

sidered no further. Whilst Shannon information has historically proven to be an

invaluable tool for the evaluation and design of information channels, this thesis

will predominantly focus on the readout stage necessary for any such channel, thus

motivating the exclusive consideration of Fisher information due to its greater suit-

ability for such a task. Furthermore due to its close relations to Fisher information,

as will be discussed in Section 3.3.3, attention will also be restricted to maximum

likelihood (ML) estimation strategies.

With this in mind, this chapter sets out to establish the central aspects of sta-

tistical inference which will be heavily used and quoted in the remainder of this
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thesis. Specifically Section 3.2 will formalise the concept of MLEs, detailing their

construction and properties. Formulation of optimal estimators, however, requires

incorporating a model for the noise present in the system of interest. In optical

systems noise can be attributed to two sources which Delaubert et. al [50] refer

to as technical and quantum noise. The former arises from imperfect experimental

setup, for example mechanical vibrations or stray reflections, and can in principle

be reduced to an arbitrarily low level by better system design. Quantum noise how-

ever, arising from the discrete nature of light and the stochastic nature of photon

arrivals at the detector, can not. Quantum (or shot) noise limited operation has

been reached in many applications, for example single molecule detection, optical

coherence tomography (OCT) and astronomy [56, 73, 187]. As discussed in Chapter

2 the former, technical noise, can often be suitably described using Gaussian statis-

tics, whilst the latter is more correctly modelled using Poissonian statistics. Explicit

expressions for the MLE in both noise regimes will hence be given.

Estimators, being derived from random data, are also random variables. Ac-

cordingly, the notions of parameterising random behaviour presented in Chapter 2

can be employed to assess the performance of any estimator that may be developed.

Particular attention will be paid to the mean and (co-) variance of an estimator.

The former, which within the context of estimation theory is known as the bias of

an estimator, quantifies the systematic error accrued during the inference process,

whilst the latter quantifies the precision of the estimator, with a larger spread cor-

responding to a lower confidence in any estimate. Section 3.2.2 hence proceeds by

discussing the mean and covariance of MLEs. Formally a lower bound on the covari-

ance matrix of an estimator can be found, known as the Cramér-Rao lower bound

(CRLB), and will be detailed in Section 3.3 including discussion of two informational

metrics derived from Fisher’s definition of information.

Sections 3.4 and 3.5 finally consider how the use of a priori information can

be used to improve estimation algorithms. The first, extends the maximum likeli-

hood principle to encapsulate constraints that may exist within a system, a simple

example being a positivity constraint on optical intensities. Section 3.5 considers

incorporation of probabilistic a priori information that may be held with regards to

the signal source, for example, in binary communication channels it is known that

61



Chapter 3: Information and estimation theory

either a logical 0 or 1 are transmitted with equal probability. Both strategies ideally

improve the quality and precision to which parameters of interest can be estimated,

as can be expressed using modified versions of the CRLB, thus also provoking a

short discussion in this vein.

3.2 Maximum likelihood estimation

3.2.1 Definition

Many systems can be modeled as having an output dependent upon a set of Nw

complex parameters wj
1, the values of which are of interest to an experimenter.

However, due to transformations performed by the experimental setup and mea-

surement device and the presence of noise the experimenter will obtain a set of Nx

data points Xk. Having obtained their data, an experimenter sets to the task of

estimating the value of the parameters w from X. To do so each possible parameter

value must be evaluated and the best selected, hence requiring a suitable metric.

Intuitively, one could consider how probable it is to observe a fixed x, for different

w (assumed, at present, to be deterministic). Adopting an optimistic view of the

experimental process, the most probable value is then used as the estimate ŵ of the

parameter vector, where the hat notation is used to denote an estimator. Essentially

this approach selects a system model (as parameterised by w) which is most likely

to explain the observed data. Mathematically this can be performed by maximising

the PDF fX(x|w), viewed as a function of w (also known as the likelihood function)

with respect to w. Alternatively, since the logarithm is a monotonically increasing

function this is equivalent to maximising the log-likelihood function, which is simply

defined as the natural logarithm of fX (x|w). From Shannon’s definition of infor-

mation2 the log-likelihood function L(x,w) can be considered as a measure of the

information received about w when x is observed.

1All of this work will assume that the quantities are complex. Hence w is assumed to be a
column vector of the form (u,u∗)T (see e.g. [293]).

2Via an axiomatic approach to information, Shannon was lead to define the amount of informa-
tion gained when a particular symbol xi is received, as − log pX(xi), where pX(xi) is the marginal
or a priori probability associated with receiving xi. The base of the logarithm is normally taken
as two but a different choice only corresponds to a change of units. An analogous formulation for
continuous random variables exists in which information can be defined as − log fX(x).
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Using the log-likelihood function a Nw × 1 score vector can be constructed viz.3

sw(w) =

[
∂

∂w
ln fX (x|w)

]†
, (3.1)

which, as the name suggests, grades different values of w. Stationary points of the

log-likelihood function are given by the solutions of the ML equations s(ŵ) = 0,

where ŵ is then known as the maximum likelihood estimator (MLE). To determine

the nature of the stationary point (and hence demonstrate that ŵ gives a maximum

in the likelihood function) consider the Hessian matrix of the log-likelihood function

given by

N =

{
∂

∂w

[
∂

∂w
ln fX (x|w)

]†}†
,

=
1

f 2
X (x|w)

{
fX (x|w)

∂

∂w

[
∂

∂w
fX (x|w)

]†
− ∂

∂w
fX (x|w)

[
∂

∂w
fX (x|w)

]†}†
,

=
1

fX (x|w)

{
∂

∂w

[
∂

∂w
fX (x|w)

]†}†
−
[
∂

∂w
ln fX (x|w)

]†
∂

∂w
ln fX (x|w) .

(3.2)

Since N can not be written in the form AA†, no comment can be made with regards

to its definiteness [30] and hence as to the nature of the stationary point. It should

be noted however that since the observed data vector is a random variable, then

so too are the score vector and the estimator ŵ. Average properties of sw and ŵ

can then be examined. In particular consider the mean of the score vector and its

gradient N;

E[sw(w)] = E

[(
∂

∂w
ln fX (x|w)

)†]
,

=

∫ (
∂

∂w
fX (x|w)

)†
dx ,

=

(
∂

∂w

∫
fX (x|w) dx

)†
= 0 , (3.3)

3Matrix calculus will be seen to play an important role in this work. Various authors use
different conventions in this regard however those detailed in [30] are adopted henceforth.
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where 0 is a column vector of zeros and it has been assumed that the order of

differentiation and integration can be interchanged4. By a similar argument the

expectation of first term of the Hessian matrix averages to zero, leaving

E[N] = −E

[(
∂

∂w
ln fX (x|w)

)†
∂

∂w
ln fX (x|w)

]
. (3.4)

Since the kernel of the expectation is now of the form AA† it is positive semi-definite,

implying that the Hessian matrix is on average negative definite, or in other words,

the solutions of sw(ŵ) = 0, on average, give maxima in the log-likelihood function.

Should multiple solutions exist to the ML equations then further investigation must

be made to identify the global maximum. It will however henceforth be assumed

that the solution to the ML equations is unique.

3.2.2 Properties of the maximum likelihood estimator

Having estimated the parameters of interest, w, the quality of the estimator must

be judged so as to quantify the level of confidence to be held in ŵ. Usually this is

done using the bias bw = E[ŵ]−w and covariance matrix Kw = E[(ŵ−E[ŵ])(ŵ−
E[ŵ])†]. These parameters will naturally differ between different noise models, there-

fore the performance of the MLE in Gaussian and Poisson noise regimes are hence

both considered here.

3.2.2.1 Maximum likelihood estimation in Gaussian noise

To determine the form and performance of the MLE in Gaussian noise (introduced

in Section 2.3.2), it is first necessary to calculate the log-likelihood function. Sub-

stitution of Eq. (2.56) gives

ln fX(x|w) = −n ln(π|K|)− (x− µ)†K−1(x− µ) , (3.5)

where the mean, µ = µ(w), is dependent on w, whilst it has been assumed that

the covariance matrix K is independent of the parameter values.

4If the PDF fX (x|w) has a finite support in x, this assertion requires that the bounds do not
depend on w. Alternatively, if the PDF has infinite support it requires the integral converge for
all w. These conditions will be assumed to hold throughout this thesis.
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From Eqs. (3.1) and (3.5) the score vector is given by

sw = 2

(
∂µ

∂w

)†
K−1(x− µ) , (3.6)

where the fact that K is Hermitian has been used. Equating this equation to zero

and solving for w yields the MLE. Such a solution cannot be expressed in closed

form, thus to illustrate the properties of the MLE consider a linear model in which

µ = Hw. Within this construction the score vector reduces to

sw = 2H†K−1(x−Hw) , (3.7)

such that

ŵ =
[
H†K−1H

]−1 H†K−1x , (3.8)

where it is assumed the inverse
[
H†K−1H

]−1
exists. The bias can then be explicitly

evaluated by considering

bw = E[ŵ −w] =
[
H†K−1H

]−1 H†K−1E[x]−w ,

=
[
H†K−1H

]−1 H†K−1µ−w ,

= w −w = 0 , (3.9)

where the third equality follows from the fact that µ = Hw and that A−1A = I,

where I is the identity matrix. The MLE in Gaussian noise is thus seen to be

unbiased. Similarly the covariance matrix can be found according to

Kw = E
[
(ŵ − E[ŵ])(ŵ − E[ŵ])†

]
= E

[
(ŵ −w)(ŵ −w)†

]
,

= E
[([

H†K−1H
]−1 H†K−1x−w

)(
x†K−†H

[
H†K−1H

]−† −w†
)]
. (3.10)

Expanding the brackets yields

Kw =
[
H†K−1H

]−1 H†K−1E
[
xx†
]
K−†H

[
H†K−1H

]−† −ww† . (3.11)

Finally noting that E[xx†] = K + H ww†H†, gives the Nw × Nw covariance matrix
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of the MLE as Kw = [H†K−1H]−1.

3.2.2.2 Maximum likelihood estimation in Poisson noise

Shifting attention now to the MLE in the presence of Poisson noise, a derivation of

the bias and covariance, analogous to that given in [11], is given. Although not novel,

reproduction of this derivation is insightful, firstly to understand the conditions un-

der which the MLE performs well, as shall be discussed later in Section 3.3, but also

since the same logic can be applied to constrained estimation (see Section 3.4.1.2),

which to the best of the author’s knowledge has not previously been reported.

Consider then a set of Nx Poisson random variables, Xj, assumed to be indepen-

dent. Such an assumption is valid, for example, when considering quantum noise

infecting the readout from multiple CCD pixels. Accordingly the joint PDF can be

written

f(x|w) =
Nx∏
j=1

µ
xj
j

xj!
exp(−µj) , (3.12)

where µj denotes the jth element of the mean vector µ. Therefore the log-likelihood

function is given by

L(x,w) =
Nx∑
j=1

xj lnµj − µj − ln[xj!] . (3.13)

Taking the derivative as per Eq. (3.1) yields the score vector

sw =

(
∂µ

∂w

)† (
K−1x− 1

)
, (3.14)

where K is the diagonal covariance matrix diag[µ1, . . . , µNx ]
5 and 1 is a vector of

ones. Written out element-wise and again assuming a linear model, the set of Nw

5This is the appropriate covariance matrix since for a Poisson random variable the mean and
variance are equal (see Table 2.1). Furthermore, the covariance matrix for independent random
variables is diagonal as discussed in Section 2.1.3.2.
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ML equations are

0 =
Nx∑
j=1

H∗jk

(
xj

µ̂j(ŵ)
− 1

)
, for all k, (3.15)

where Hjk denotes the (j, k)th element of H and µ̂j(ŵ) is the MLE of the jth element

of the mean vector µ (see Section 3.2.2.3 for a discussion on the validity of this

approach). The solution of these equations however can not be expressed in closed

form, but can easily be found numerically, for example by the method of scoring

[195].

Calculation of the bias and covariance matrix of the MLE is however possible by

letting δw = ŵ−w and taking a multivariate Taylor expansion [16] of 1/µ̂j(w+δw),

which to first order is

1

µ̂j(w + δw)
≈ 1

µj(w)
− 1

µ2
j(w)

∂µi(w)

∂w
· δw ,

≈ 1

µj(w)
− 1

µ2
j(w)

Nw∑
k=0

Hik δwk . (3.16)

Substituting Eq. (3.16) into Eq. (3.15) and further letting x = µ + δx gives

0 ≈
Nx∑
j=1

H∗jk

(
[µj + δxj]

[
1

µj
− 1

µ2
j

Nw∑
k=0

Hik δwk

]
− 1

)
,

≈
Nx∑
j=1

δxj
µj

H∗jk −
Nx∑
j=1

Nw∑
k=0

1

µj
HikH

∗
jk δwk , for all k, (3.17)

or in matrix form

0 ≈ H†K−1δx−H†K−1 H δw . (3.18)

Assuming the inverse [H†K−1 H]−1 exists, algebraic manipulation gives

δw ≈
[
H†K−1H

]−1 H†K−1δx . (3.19)

The bias and covariance of the MLE to a first order approximation can then be
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examined by considering

bw ≈ E[δw] = 0 , (3.20)

Kw ≈ E[δwδw†] = [H†K−1H]−1, (3.21)

since E[δx] = 0 and E[δxδx†] = K.

3.2.2.3 Invariance of the MLE

For any particular setup it may be desirable to form the MLE of a function of the

parameters w. Take for instance a polarimetric example (see Chapter 5) in which the

state of polarisation of light is inferred from raw intensity measurements. Intensity

and polarisation can be easily related in these systems, however the question arises

as to whether it is admissible to calculate the MLE of the polarisation state in terms

of the MLE for the recorded intensities. To answer this question consider estimating

the output of the vector valued (many-to-one) function θ = Θ(w). Following [245],

the function Θ defines a mapping of a (possibly extended) region in the domain

of w, denoted W ⊆ Cp, to a single point in the domain T ⊆ Cn of θ, where Cj

denotes the j-dimensional domain of complex numbers, as shown schematically in

Figure 3.1.

The MLE of w is found by maximising the log-likelihood function L(x,w), whilst

the MLE of θ is found by maximising the log-likelihood function L(x,θ). For a given

θ, the region defined by Θ−1(θ) is known as the coset of θ. By construction the set

of cosets form a disjoint covering of W hence implying that a given MLE ŵ lies in

a single coset. Consequently it is possible to write

L(x,θ) = max
w∈Θ−1(θ)

[L(x,w)] , (3.22)

such that the MLE of θ is found by maximising this log-likelihood function viz.

max
θ

[L(x,θ)] = max
θ

[
max

w∈Θ−1(θ)
[L(x,w)]

]
. (3.23)

Eq. (3.23) demonstrates that maximising either log-likelihood function with respect

to the corresponding parameter vector is equivalent, such that θ̂ = Θ(ŵ), i.e. the
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Figure 3.1: Schematic, following [245], of the mapping θ = Θ(w), from W to T .

MLE of a function of a set of parameters can be found by first finding the MLE of

the original parameters and using these as input into the mapping function, a result

known as the invariance of the MLE.

3.3 Cramér-Rao lower bound

Pivotal in the theory of statistical estimation was the formulation of a lower bound

on the covariance matrix of any estimator, known as the Cramér-Rao lower bound

(CRLB) [43, 230]. The CRLB in its most commonly used form is valid for unbiased

estimators only, whereby it is possible to say that the variance of any estimate made

of the parameter vector w is bounded by

Kw ≥ J−1
w , (3.24)

where the inequality implies the difference of the two matrices is positive definite,

and does not necessarily hold element-wise, and Jw is a Nw ×Nw matrix known as
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the Fisher information matrix (FIM) [66, 67] defined by

Jw = E

[(
∂ ln fX (x|w)

∂w

)†
∂ ln fX (x|w)

∂w

]
. (3.25)

Although originally derived for estimation of real parameters it was later shown

that Eq. (3.24) is valid for complex parameters if the FIM is defined according to

Eq. (3.25) and hence only the complex form has been given here. An estimator

which achieves the CRLB, i.e. for which Kw = J−1
w , is called efficient.

Inspection of Eqs. (3.1) and (3.25) reveals that the FIM can be expressed as the

covariance matrix6 of the score vector Jw = E
[
sw(w)sw(w)†

]
, that is to say it is a

measure of how much the score varies as the value of w is varied. If all values of w

score well then the variance of the score will be low and it is hard to choose which

value of w is more appropriate. A large covariance or Fisher information corresponds

to a stronger dependence between the observed data X and the parameter of interest,

meaning w can be determined more accurately (as encapsulated by Eq. (3.24)).

Furthermore, Eq. (3.4) in conjunction with Eq. (3.25) provides a second defini-

tion for the FIM

Jw = −E

[(
∂sw

∂w

)†]
= −E

( ∂

∂w

[
∂

∂w
ln fX (x|w)

]†)† . (3.26)

The second order derivative found in the kernel of this expectation can be interpreted

as a measure of the curvature of the PDF as the parameter value w is varied. If this

curvature is large this again equates to a strong dependence of the observed data X

on w.

Biased estimators, however, present a further complication because they render

Eq. (3.24) invalid. Bias can, for example be introduced if the parameters w are

a non-linear function of the measured data. Under these circumstances a biased

CRLB can be derived (see [124] for a derivation assuming real parameters, or a

6The score vector has zero mean as per Eq. (3.3).
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complex extension can be found in Appendix A) whereby

Kw ≥
(

I +
∂bw

∂w

)
J−1

w

(
I +

∂bw

∂w

)†
. (3.27)

Efficiency of an estimator is also destroyed under the same circumstances as bias is

introduced, except in the asymptotic limit of an infinite number of samples.

3.3.1 Functions of parameters and nuisance parameters

As discussed previously in Section 3.2.2.3 it is occasionally required to estimate a

function of the parameters w, namely Θ(w). The invariance of the MLE allows the

CRLB to be extended so as to include this scenario. Application of the chain rule

when calculating the score vector gives sθ(θ) = G†sw(w) where G = ∂w
∂θ

such that

the FIM becomes

Jθ = G†JwG . (3.28)

Hitherto it has also been assumed that full knowledge of the parameter vector

w was desired, however this may not always be the case, an example of which is

highlighted in Section 5.3.1.3. Assume then that the parameter vector w is formed

via the concatenation of two vectors u and v such that w = (u,v). u is assumed to

contain the Nu desired parameters, whilst v contains Nv parameters that are of little

interest, known as nuisance parameters. When nuisance parameters are present the

relevant Nu ×Nu FIM, Ju, is given by [15]

Ju = J11 − J12 J−1
22 J21 , (3.29)

where J11 is Nu ×Nu, J12 is Nu ×Nv, J21 is Nv ×Nu, J22 is Nv ×Nv and

Jw =

 J11 J12

J21 J22

 (3.30)

is the FIM for all parameters.
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3.3.2 Informational metrics

As a metric of performance, a matrix quantity, such as the FIM or estimator covari-

ance matrix, is not ideal since its interpretation is often non-trivial. Scalar measures

are thus preferable, therefore prompting the introduction of suitable quantities here.

The first, known as the Fisher channel capacity Cw was defined by Frieden [80] and

quantifies the ability of an estimation routine to extract Fisher information about

the parameters of interest. Mathematically, the Fisher channel capacity is given by

the trace of the FIM, i.e. Cw = tr[Jw]. Noting that Eq. (3.24) also implies the

weaker inequality VAR[wk] ≥ 1/[Jw]kk it can be seen that the Fisher channel capac-

ity is a measure of the maximum total precision (as parameterised by the reciprocal

of the variance) achievable. A larger Cw therefore describes the potential for better

parameter estimation.

Alternatively one can consider the nature of the estimator ŵ itself. Since the

parameter estimate is derived from random experimental data, ŵ is itself a ran-

dom variable. Each experimental realisation, perturbed by differing noise, hence

defines a different point in the Nw-dimensional Hilbert space in which w lies. For

example, if attempting to estimate the Stokes vector (see Section 4.2.4) of polarised

light from noisy intensity measurements, whereupon w = S, each estimate Ŝ de-

fines a position in Stokes space (see Section 4.2.6). If the estimator is unbiased,

the random distribution of estimates will be centered on the true parameter value.

The eigensystem of the FIM then defines the axes of a set of concentric “ellipsoids

of minimum uncertainty” (in the sense of the CRLB) in Hilbert space, defined by

(ŵ−w)†J(ŵ−w) = c2. The parameter c dictates the fraction of the estimates re-

sulting from repeated experiments which lie within the ellipsoid [245]. For example,

if an unbiased efficient estimator ŵ with covariance matrix J−1 was normally dis-

tributed, then the probability that a particular estimate would lie within the region

c2 ≤ c2
0 could be found by integrating the Nw dimensional χ2-squared probability

distribution from 0 to c2.

With these considerations in mind it is apparent that the volume of the so-called
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ellipsoids of concentration, given by

Vmin = VNw
√
cNw |J−1

w | = VNw

√
cNw

|Jw|
, (3.31)

can be used as a metric of aggregate error [245], where VNw is the volume of the Nw-

dimensional unit hypersphere. As such the determinant of the FIM can be used as a

figure of merit, whereby a larger determinant is preferable. This criterion is known

as D-optimality [188, 299] and has the important advantage that it is invariant

under linear operations performed on the output [188]. In the presence of nuisance

parameters the appropriate matrix determinant is

|Ju| =
|Jw|
|J22|

. (3.32)

3.3.3 MLE versus other estimators

In light of the CRLB it is possible to justify the sole consideration of the MLE over

alternative estimators, such as a method of moments or minimum mean square esti-

mator7. A well documented result in statistical fields is that if an efficient estimator

exists then it is the MLE (see e.g. [245]), however if no such estimator exists then

the MLE is both asymptotically unbiased and asymptotically efficient as the number

of data points taken tends to infinity. These desirable properties are not mirrored

by other estimators. By restricting attention to the MLE the absolute performance

limits are hence investigated.

With regards to the noise models considered earlier it is possible to show that the

FIM is given exactly (for a linear model) by Jw = H†K−1H in both cases, where K is

the appropriate covariance matrix. The MLE estimator in Gaussian noise is hence

both unbiased and efficient. On the other hand, due to the approximations taken in

Eq. (3.16) the MLE in the presence of Poisson noise is only approximately unbiased

and efficient. That said, the MLE still maintains these properties asymptotically.

In particular it has been shown [11] that if Poisson noise arises from the discrete

nature of light incident on to a detector, then each photon can be considered as an

7In the presence of Gaussian noise the minimum mean square estimator and MLE are equivalent
[139].
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independent sample and hence asymptotics correspond to increasing intensity on the

detector. Quantitatively acceptable convergence was calculated, using the Central

Limit Theorem, to require approximately 8000 photons and will hence be achieved

in most classical optical experiments. If such a criteria is not meet then the CRLB

is not the strongest bound and one must resort to alternative bounds, such as the

Barankin bound as discussed in [10, 142, 198]. Full exposition of these bounds will

however not been given here.

3.4 Constrained maximum likelihood estimation

Constraints on allowable parameter values, for example physical electromagnetic

fields must satisfy Maxwell’s equations, constitute a form of a priori information

about the detected output. If incorporated correctly in the data processing stage

this a priori information would be expected to reduce the effect of experimental

errors (see for example Section 6.5). In this section this claim is investigated by

considering the analog to the MLE, termed the constrained maximum likelihood

estimator (CMLE), and its performance.

Conventional maximum likelihood estimation of a set of parameters w aims to

maximise the log-likelihood function L(x,w) = ln f(x|w). To incorporate param-

eter constraints it is possible to use the method of Lagrange multipliers [16], re-

quiring slight modification of the the log-likelihood function and hence the score

vector. Considering only linear equality constraints8 on the parameters w, ex-

pressed in the form Gww = 0 the modified log-likelihood function is given by

L(x,w) = ln f(x|w) + λ†Gww where λ is a vector of Lagrange multipliers. It

is this modified log-likelihood function that is maximised in constrained maximum

likelihood estimation.

For Gaussian and Poisson noise regimes the constrained score vectors are given

by

sw = 2H†K−1
w [x−Hw] + G†wλ , (3.33)

8Inequality constraints are considered in [92], but were shown to leave the FIM unchanged.
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and

sw = H†
(
K−1

w x− 1
)

+ G†wλ , (3.34)

respectively. Consider first the Gaussian case. Following the same steps as given in

Section 3.2.2.1 and using the result Jw = H†K−1H yields

ŵ = J−1
w

(
H†K−1x + G†w

λ

2

)
. (3.35)

It is however required that the CMLE satisfy the parameter constraints and thus,

by asserting Gwŵ = 0, Eq. (3.35) gives

λ

2
= −

[
GwJ−1

w G†w
]−1 GwJ−1

w H†K−1x . (3.36)

Upon substitution into Eq. (3.35) the final form of the CMLE is found to be

ŵ =
(
J−1

w − J−1
w G†w

[
GwJ−1G†w

]−1 GwJ−1
w

)
H†K−1x . (3.37)

Eq. (3.36) can also be shown to hold for quadratic constraints of the form

w†Gww = 0 . (3.38)

Eq. (3.37) therefore gives the CMLE in Gaussian noise under linear and quadratic

equality constraints.

Similarly for constrained estimation in Poisson noise it is possible to derive

the analog of Eq. (3.19). Starting from Eq. (3.34) and following the steps of Sec-

tion 3.2.2.2 yields

δw ≈ J−1
w H†K−1δx + J−1

w G†λ . (3.39)

Constraining the CMLE then implies Gwδw = 0 such that

λ ≈ −
[
GwJ−1

w G†w
]−1 GwJ−1

w H†K−1δx. (3.40)

Approximating Eq. (3.34) by means of the Taylor expansion discussed previously
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(Eq. (3.16)) and substitution of Eq. (3.40), gives the constrained ML equations that

must be solved to find the CMLE in the form

0 ≈
(
I−G†w

[
GwJ−1

w G†w
]−1 GwJ−1

w

) (
H†K−1x− 1

)
. (3.41)

Eq. (3.41) is not amenable to analytic solution for ŵ and hence will again require a

numerical approach.

3.4.1 Constrained Cramér-Rao lower bound

The CRLB provides a means to characterise the best achievable performance for any

unbiased estimator, by lower-bounding the covariance matrix of the estimator by the

inverse of the FIM. For constrained estimation it would however be expected that

better performance is obtainable than that specified by the CRLB. This expectation

does hold and has been considered by previous authors. For example Gorman and

Hero considered the constrained CRLB (CCRLB) when the unconstrained model

has a non-singular FIM [92], as was also considered by Marzetta [180]. Stoica and

Ng reformulated the derivation without the restriction of a non-singular FIM [265].

Results will be quoted from these papers as required in what follows.

For unconstrained problems the MLE is used due to its desirable asymptotic

properties, as discussed in Section 3.3.3. Crowder has shown that these properties

also hold for the CMLE [44]. The popularity of the MLE in the literature and this

thesis is also, in part, due to the fact that if an efficient estimator exists, then the ML

method will produce an efficient estimator. Fortunately this property also extends

to the CMLE, thus further motivating the use of these estimators in this work. In

this section it is thus shown that the CMLEs derived in the previous section are

efficient. This result will hold exactly for estimation in Gaussian noise and to a first

order approximation for Poisson noise.

3.4.1.1 Gaussian noise

To prove the efficiency of the CMLE in Gaussian noise reference need only be made

to earlier results and the literature. In, for example, [92] it was shown that the
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CCRLB is given by

Kw ≥ J−1
w − J−1

w G†w
[
GwJ−1

w G†w
]−1 GwJ−1

w = Bw . (3.42)

It is first necessary to show that the CMLE is unbiased by taking the expectation

of Eq. (3.37) yielding

E [ŵ] = w + E[δw] = BwH†K−1µ , (3.43)

since E [x] = µ. Consequently E[δw] = 0 as required. The covariance matrix of the

CMLE then follows:

Kw = E
[
δwδw†

]
,

= BwH†K−1E
[
xx†
]

K−†HB†w ,

= BwH†K−1H B†w = Bw . (3.44)

The CMLE is therefore seen to be efficient in Gaussian noise as has been previously

reported in, for example, [195].

3.4.1.2 Poisson noise

To prove the efficiency of the CMLE in Poisson noise under a first order approxi-

mation Eqs. (3.39) and (3.40) are used. Together these equations give

δw ≈ BwH†K−1δx . (3.45)

The bias of the CMLE can be immediately examined and is again found to be zero.

The covariance matrix of the CMLE is furthermore found to be equal to Bw to

within the first order approximations taken, hence demonstrating the efficiency of

the CMLE in the presence of Poisson noise.
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3.5 Bayesian estimation

Equations given thus far are valid only for a particular value of w, however the pa-

rameter values may differ between different experimental setups or measurements.

The experimenter may however know from an existing model or earlier data that the

object being studied belongs to a restricted class, that is to say they possess some

a priori information about the parameters being measured. A fibre-optic commu-

nication channel again provides a good example, where it is known that during a

measurement window either a pulse will be received or not with equal probability,

representing logical 1 and 0 respectively. In these circumstances estimators are best

treated using a Bayesian framework.

From the Bayesian viewpoint the parameter vector w is considered to be a ran-

dom variable whose associated PDF, fW(w), is known a priori (and hence known

as a prior PDF). This is contrary to the classical philosophy where w is assumed to

be deterministic and constant for multiple experiments. Accordingly it is possible

to modify the definition of the FIM to accommodate this random behaviour and

an estimator’s a priori knowledge of its behaviour. A derivation for this scenario

is given in Appendix A however the final result is restated here for completeness.

Specifically the Bayesian Fisher information matrix (BFIM) is given by

Jw = Ew [Jrw] + Japw , (3.46)

where Jrw is the deterministic FIM given by Eq. (3.25) and Japw depends only on the

prior PDF fW(w) via

Japw = Ew

[(
∂

∂w
ln fW(w)

)†
∂

∂w
ln fW(w)

]
. (3.47)

A Bayesian Cramér-Rao lower bound (BCRLB) can thus be shown to hold, as was

originally done by van Trees [296], whereby

Kw ≥ J−1
w , (3.48)

where Jw is now the BFIM and Kw is the covariance matrix of the estimator ŵ.
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This bound is also commonly referred to as the “van Trees inequality” or “posterior

CRLB”.

The problem with the Bayesian approach is that the choice of a suitable prior

distribution is often difficult to justify when modelling stochastic systems. Bias,

however, is not a problem9 (c.f. Eq. (3.24) which is only valid for unbiased estima-

tors). Bayesian estimators are in fact often biased since they tend to give estimates

which lean towards values which are known a priori to be more likely. If no a priori

knowledge about the possible values of the random parameter is possessed, it can

be argued that the prior PDF should be nearly flat such that any estimator formed

will not cluster around any particular value. In the limit a uniform PDF over the

admissible values of w can be used. Such a PDF is known as a non-informative

PDF.

Again the question as to the existence of efficient estimators arises in the Bayesian

paradigm. Fortunately it can be shown [296] that the maximum a posteriori (MAP)

estimator is in many respects the Bayesian equivalent of the MLE. As such, if an

efficient estimator exists in the Bayesian sense then it will be the MAP estimator

otherwise the MAP estimator is asymptotically efficient and hence the BCRLB

is achievable. It is important to note that whilst the MAP estimator performs

optimally with regards to the BCRLB, it is a special case of more general Bayesian

estimators, which perform optimally subject to alternative cost functions (a fuller

discussion can, for example, be found in [245]).

3.6 Conclusions

By no means exhaustive, this chapter has set out to present a number of results

in estimation theory that are crucial for later chapters. In so doing the maximum

likelihood estimator has been introduced and a number of its properties considered

in detail, including its invariance to transformations and asymptotic behaviour with

9Formally, the assumption that the conditional bias b(w) = Eŵ|w[ŵ] − w satisfies the con-
straints

lim
w→±∞

b(w)f(ŵ|w) = 0 (3.49)

is required in a full derivation of Eq. (3.46) (see [296]). Such a constraint shall, however, be assumed
to hold throughout this work.
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regards to efficiency and bias. Owing to the noise sources in typical optical systems

the explicit form of the MLE under Gaussian and Poisson noise regimes was given.

Most importantly to the remainder of this thesis, an alternative metric to Shan-

non’s celebrated information measure was introduced, namely Fisher information,

due to its greater suitability when considering the readout stage of an information

channel. Fisher information, within the context of the CRLB, has seen particular

emphasis in this chapter, since it is this bound which sets the limit to which ex-

perimental parameters can be estimated. Modification of the definition of Fisher

information in the presence of nuisance parameters was also considered.

Finally the incorporation of different forms of a priori information into estima-

tion protocols was discussed. Specifically, known constraints on a system allow a

constrained maximum likelihood estimator to be constructed, which shares many

optimal properties with the unconstrained version however exhibits better overall

performance. Optimal properties again include the asymptotic, if not exact, achieve-

ment of the modified CCRLB. Probabilistic a priori information however lends itself

towards use of a Bayesian estimator such as the MAP estimator, which again pos-

sesses optimal properties with regards to the BCRLB. All of these concepts will

prove fruitful in later chapters when considering how various measurement systems

can be improved in informational terms.
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Chapter 4

Vectorial optics

Surely no one can find fault with the labours which
eminent men have entered upon in respect of light,
or into which they may enter as regards electricity
and magnetism.

Michael Faraday

4.1 Electromagnetism and optics

Maxwell’s famous set of equations [182] provided a unification of a number of empiri-

cal results gathered during the 19th century, namely Gauss’ flux theorems, Faraday’s

law of induction and Ampère’s circuital law. Collectively these laws describe the

properties of electromagnetic fields and their relation to charge and current distri-

butions. In macroscopic differential form Maxwell’s equations take the form

∇ ·D = σf , (4.1)

∇ ·B = 0 , (4.2)

∇× E = −∂B

∂t
, (4.3)

∇×H = Jf +
∂D

∂t
, (4.4)
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where D, E, H and B are the electric displacement, electric field, magnetic field

and magnetic flux density respectively, whereas σf and Jf are the free charge and

current densities. To provide a complete physical description of a system, Maxwell’s

equations must also be supplemented with constitutive relations, which describe how

bulk magnetisation and polarisation of a medium are induced from the presence of

a field. On a more fundamental level, the constitutive relations physically describe

the strength of response of bound charge and current densities in a medium and are

given by

D = εE , (4.5)

B = µH , (4.6)

under a harmonic bounding potential approximation [47], where ε and µ are the

electric permittivity and magnetic permeability of a material, assumed isotropic

respectively1. The permittivity and permeability of a medium are often expressed in

relation to those of free space, ε0 = 8.854× 10−12 Fm−1 and µ0 = 4π × 10−7 Hm−1,

such that ε = εrε0 and µ = µrµ0, where εr and µr are then termed the relative

permittivity and permeability respectively.

Upon formulation of these equations, it is possible to derive a wave equation for

the electromagnetic field, which easily follows by substituting Eq. (4.4) into the curl

of Eq. (4.3) in conjunction with Eqs. (4.5) and (4.6), giving

∇×∇× E = µ

(
∂Jf
∂t

+ ε
∂2E

∂t2

)
. (4.7)

In source free regions whereby σf = 0 and Jf = 0, the vector wave equation reduces

to

∇2E = −εµω2E , (4.8)

where the vector identity ∇×∇×A = ∇(∇ ·A)−∇2A has been used [16] and an

exp(−iωt) time dependence assumed. ω is thus the frequency of the electromagnetic

1If the medium is not isotropic then ε and µ must be replaced by permittivity and permeability
tensors.
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wave travelling at a speed v = 1/
√
εµ. Substitution of experimental values of ε and

µ gave agreement with the speed of light, prompting Maxwell to propose light as a

manifestation of electromagnetism, further supporting observations by Faraday [62]

of a change in the polarisation of an optical field by application of a strong magnetic

field; a magneto-optical phenomena now bearing his name.

Optics is thus merely electromagnetism specialised to frequencies of approxi-

mately 3×1014–1×1015 Hz (or equivalently wavelengths of 300–1000 nm). This

range of frequencies not only encompasses the visible spectrum, but also extends

into the near infra-red and ultra-violet regimes. Throughout the rest of this work

only (quasi)-monochromatic electromagnetic fields that lie within this frequency

range will be considered. A fuller discussion of Maxwell’s equations and some of the

numerous results that follow, can be found in any good electromagnetism textbook

e.g. [122, 268].

4.2 Polarisation of light

Maxwell’s theory of electromagnetism is a vector field theory implying optical fields

are also inherently vectorial. This property was first observed in optics (before

Maxwell) by Bartholinus, a Danish mathematician studying the optical properties

of calcite (CaCO3) [12]. He observed that light passing through calcite could pro-

duce two displaced images, a phenomenon now called double refraction, or more

commonly birefringence, however this effect was poorly understood until the works

of Huygens wave theory published in 1690 [114] and Newton’s corpuscular theory of

1704 [207].

Polarisation is a property that can be identified for any vector field and simply

refers to the time evolution of a field vector at a fixed point in space. For light

however four different field vectors can be identified, namely E, D, B or H. Due to

the relationships between these different field quantities, as embodied by Maxwell’s

equations, it is sufficient to use only one to describe the polarisation of an elec-

tromagnetic field. The choice is arbitrary, however by convention the electric field

vector E is used since it is the electric field that is dominant in many of the inter-

actions between light and matter, see for example [75]. This definition will thus be
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used throughout this work.

By way of an illustration consider two important states of polarisation, namely

linearly polarised and circularly polarised light. Linearly polarised light is light for

which the electric field vector oscillates in a single plane. Linearly polarised light can

be described in terms of the angle at which the plane of oscillation lies relative to a

reference direction, which shall henceforth be taken as the x-axis, where the normal

convention of taking the z-axis as the optical axis of a system is also adopted. In

particular, the terms horizontally and vertically polarised light will be frequently

used and should be taken to be light oscillating in a plane at 0◦ and 90◦ to the

x-axis respectively.

Circularly polarised light possesses an electric field vector which draws out cir-

cles in a plane transverse to the direction of propagation with time. This can, for

example, be produced by the superposition of two orthogonally linearly polarised

fields, which oscillate 90◦ out of phase. This rotation can be in a right (clockwise)

or left handed (anti-clockwise) sense (unsurprisingly termed right and left circularly

polarised light respectively), where optical convention is to consider the direction of

rotation when viewing the light from positive z towards the origin.

A number of different formulations exist to describe the polarisation state of light

and frequent use and reference will be made of many of these during this thesis. As

such, it is pertinent to discuss here the basic mathematical definitions and relations

between them before any further discussion can be made. What follows is by no

means intended to be a complete reference on polarised light, for many works already

exist, e.g. [7, 87], but should provide the necessary results and background assumed

in later chapters. A summary of different representations of some common states of

polarisation is given in Table 4.1.

4.2.1 Lissajous diagrams and the polarisation ellipse

Lissajous diagrams are perhaps most directly related to the definition of polarisation

already introduced. In particular, if one were to trace the end point of the electric

field vector as seen from a position upstream of the wave, looking towards the origin

of the coordinate system along the optical axis, one would obtain a Lissajous diagram

[256]. Generally such a trace possesses the form of an ellipse, as shown in Table 4.1.
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Mathematically an ellipse can be fully parameterised by two variables, such as its

ellipticity, tan ε (where ε is termed the ellipticity angle), and the angle of the major

axis relative to the x axis, ϑ, yet to fully specify a field the absolute amplitude, E0

and phase δ of the field vector at t = 0 are also required. Lissajous diagrams give

rise to much of the terminology surrounding states of polarisation, such as linear,

circular and elliptical polarisation, however do not present a particularly powerful

technique in terms of problem solving and hence alternatives must be sought.

4.2.2 Jones vectors

Jones vectors and the associated calculus (see Section 4.3), introduced in a series of

eight papers by R. Clark Jones during the 1940’s and 50’s [125, 126, 127, 128, 129,

130, 131, 132], define the polarisation of a monochromatic transverse electromagnetic

plane wave by specifying the complex amplitudes of the components of the electric

field perpendicular to the direction of propagation. For example, the full electric

field vector of a monochromatic arbitrarily polarised (but spatially homogeneous)

plane wave travelling parallel to the z-axis, at time t, is given by

E(r, t) =


Ex

Ey

0

 exp[i(kzz − ωt)] , (4.9)

where Ex and Ey are the x and y components of the electric field respectively and

r = (x, y, z) is a position vector defining the point at which the field is given.

Accordingly the Jones vector is

E0 =

 Ex

Ey

 = E0 e
iδ

 cosϑ cos ε− i sinϑ sin ε

sinϑ cos ε+ i cosϑ sin ε

 . (4.10)

Implicit in the definition of Jones vectors is however a restriction to describing

collimated beams only (i.e. those with a zero component in the direction of prop-

agation). If a beam propagates obliquely to the optical axis of a system, it is still

possible to reduce the description to a two-dimensional (2D) formalism, by working

in a frame of reference in which one of the coordinate axes coincides with the direc-
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tion of propagation. A restriction to collimated beams is not of consequence for the

“crystal optics” systems for which Jones vectors were originally designed, however

increasingly modern optical systems are combining polarisation changing elements,

such as retardation plates and polarisers, with elements which change the direction

of propagation, such as lenses and prisms, necessitating a full three-dimensional

(3D) generalisation.

Extension of the Jones vector formalism to three dimensions can fortunately be

simply achieved by specifying the complex amplitude of all three field components

as opposed to only the transverse components. Maxwell’s equations, and the prior

knowledge that a generalised Jones vector describes a single plane wave (for which

E(r, t) = E0 exp[i(k · r − ωt)]) automatically fixes the propagation direction as

specified by the wave vector k, according to the equations

k · k∗ = k2 , (4.11a)

k · E0 = 0 , (4.11b)

k× (k× E0) = −k2E0 . (4.11c)

A generalised Jones matrix is thus defined as the complex field amplitudes of all three

components of the electric field with reference to a fixed set of coordinate axes. It

should be noted that the prefix “generalised” will be frequently omitted in this work

when referring to generalised Jones vectors, firstly, because many arguments given

will hold true for both 2D and 3D fields, and secondly, if this does not hold, the

appropriate number of dimensions should be clear from the context.

Finally a word should be said with regards to the specification of arbitrary field

distributions. Such fields can be represented as a superposition of vectorial plane

waves with appropriate amplitude, phase and polarisation according to

E(r) =

∫ ∞
−∞

∫ ∞
−∞

E0(k) exp(ik · r)dkxdky , (4.12)

and is known as an angular spectrum representation [264]. Here E0(k) is the Jones

vector for the plane wave with wave vector k. Drawing an analogy with scalar Fourier

optics, the angular spectrum representation can prove a powerful modelling tool, for

87



Chapter 4: Vectorial optics

example a simple thin lens converts points in the back focal plane to directions in

the focal plane (and vice-versa). As such the field distribution in the pupil plane is

seen to define the spatial frequencies in the focal plane [88]. Similar concepts have

been shown to hold in the vectorial regime, whereby one refers to the Jones pupil

of a system, which has been used, for example for characterisation of polarisation

aberrations in an optical system [184, 185, 186] . These concepts will prove useful

when later considering high numerical aperture (NA) focusing.

4.2.3 Coherency matrices

Realistically all light sources in nature are not completely deterministic, but instead

exhibit stochastic behaviour to varying degrees. Randomness of electromagnetic

waves can arise for a number of reasons, for example, radiative decay of atoms oc-

curs randomly over a typical timescale (radiative lifetime) which in turn produces a

polychromatic wave. Further examples include an extended source of atoms irregu-

larly excited, fluctuating power supplies and propagation through turbid media. On

the macroscopic level the resulting effect is to produce random fluctuations in the

amplitude, phase and polarisation of an electromagnetic field with time and space.

Jones vectors express the field at a given instant of time and are hence unfor-

tunately unable to give an adequate description of partially coherent and partially

polarised light in which amplitude, phase and polarisation are not completely cor-

related. Statistical theories of optics (including so-called coherence theory) have

therefore seen fruitful and profuse development since their inception (see e.g. [319]

for a historical account on the development of coherence theory). Initially these

theories were limited to scalar fields [18, 89, 175, 321], however development within

the vectorial regime has spawned much literature in recent years [77, 246, 272, 320].

Although a full and rigorous treatment will not be relayed here (the reader is referred

to the classical references given for such an exposition), the underlying hypothesis is

that for a given time and position the electric field can be considered as a complex

vector random variable. If, however, the full spatial and temporal behaviour is con-

sidered, a generalisation required to account for many salient features of stochastic

fields, the electric field is regarded as a random process. Due to their relation to
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physically observable quantities, such as intensity or fringe visibility2, correlation

and similar second order metrics are particularly attractive in coherence theory,

thus a (mutual) coherency matrix is defined quantifying the correlation of two field

vectors at the same (different) time(s) and position(s) (assuming wide-sense sta-

tionarity here and henceforth). First introduced by Wiener [312, 313], although also

later reintroduced by Wolf [316], the mutual coherency matrix in its most general

form can be written as

C(r1, r2, τ) = E[E(r1, 0)E†(r2, τ)] , (4.13)

where the (i, j)th element corresponds to the cross-correlation of the ith and jth field

components and τ represents the time difference between sample points3. For a 2D

(3D) treatment of the field the coherency matrix will be 2 × 2 (3 × 3). Note that

the coherency matrix is a special case of the mutual coherency matrix. Finally, it

should also be noted that in the majority of coherence literature the correlation

matrices are given in terms of time averages as opposed to the ensemble average

of Eq. (4.13). Although this definition arose from the empirical development of

coherency matrices and Stokes vectors (see Section 4.2.4) in which the time averaging

performed by physical detectors was of importance, such a replacement is sound

due to the assumption of a WSS process. As discussed in Section 2.2.2 wide-sense

stationarity implies that second order moments are independent of time (depending

on a time difference alone). Coherency matrices will henceforth be given in terms

of time averages, whereby Eq. (4.13) reads

C(r1, r2, τ) = 〈E(r1, 0)E†(r2, τ)〉 , (4.14)

so that notation more familiar to the reader can be adopted. Without further

2Defined as the ratio (Imax − Imin)/(Imax + Imin), where Imax and Imin correspond to the
maximum and minimum intensity observed in a fringe pattern.

3Wolf claims that C(r, r, 0) should be more appropriately called a polarisation matrix [321],
since the off-diagonal elements give the correlation between different field components whilst only
on-diagonal elements quantify the more classical scalar coherence properties, i.e. the phase and
amplitude correlations. Wolf is however inconsistent when generalising to spatial distributions,
reverting back to the terminology of mutual coherency matrices. For this reason and for fear of
introducing further nomenclature in a field already fraught with an over abundance of specialised
terminology, coherency matrix will be used throughout this work.
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restrictions on the class of random process under consideration (e.g. ergodicity) this

replacement is not valid for higher order moments.

Section 2.2.3 highlighted the advantages of considering random processes in the

spectral domain. Adopting this practice gives rise to the CSDM (c.f. Eq. (2.41))

W(r1, r2, ω) = 〈Ẽ(r1, ω)Ẽ†(r2, ω)〉 . (4.15)

The CSDM is equivalent to the mutual coherency matrix if considering strictly

monochromatic light. Since this assumption is made throughout this work, the ω

dependence will frequently be omitted for clarity. Furthermore the notation W and

C will be used interchangeably.

Closely related to coherency matrices are their vectorised forms, or coherency

vectors, denoted

C = 〈E⊗ E∗〉 , (4.16)

where ⊗ denotes the Kronecker product. Similarly the mutual coherency vector can

be defined by C(r1, r2) = 〈E(r1)⊗ E∗(r2)〉.

Any mathematical transformation of a coherency vector, as may be used to repre-

sent the action of an optical element, can independently change all elements. This is

in contrast to transformations applied to coherency matrices. Physically this means

coherency vectors are more suitable when describing light propagating through sys-

tems which can decorrelate field amplitudes and phases as shall be discussed in

Section 4.3. This could for example arise if an incoherent scattering process is in-

volved. Such systems are traditionally termed depolarising systems, although they

can also be viewed as “decohering” systems.

4.2.4 Stokes vectors

Despite the power of coherency matrices the elements are in general complex and

hence not directly measurable. Instead a real parameterisation of a stochastic field,

as developed by Stokes [266] sees greater usage. The Stokes parameters, explicitly

90



4.2 Polarisation of light

given by

S0 = 〈|Ex|2 + |Ey|2〉 ,
S1 = 〈|Ex|2 − |Ey|2〉 = S0P cos 2ε cos 2ϑ ,

S2 = 2〈Re[ExE
∗
y ]〉 = S0P cos 2ε sin 2ϑ ,

S3 = 2〈Im[ExE
∗
y ]〉 = S0P sin 2ε ,

(4.17)

for a 2D formulation, in turn describe the total intensity of the light beam, the

difference in intensity of horizontal and vertical polarised components, the difference

in intensity of components polarised at ±45◦ and finally the difference in intensity

of right- and left-handed circularly polarised components of the beam. P is known

as the degree of polarisation [7], defined as

P =
intensity of polarised component of beam

total intensity of beam
, (4.18)

=

√
S2

1 + S2
2 + S2

3

S0

. (4.19)

Energy conservation dictates that S2
0 ≥ S2

1 + S2
2 + S2

3 i.e. 0 ≤ P ≤ 1. Light for

which P = 0 is said to be unpolarised, whilst if P = 1 it is completely polarised.

A Stokes vector is formed when the Stokes parameters are combined into a col-

umn vector S = (S0, S1, S2, S3)T . Elements of the Stokes and associated coherency

vectors can be related by noting that the coherency matrix can be decomposed into

a basis of Hermitian trace-orthogonal matrices Pj, known as the Pauli spin matrices

due to their prominent role in quantum mechanics [267], according to

C =
1

2

3∑
j=0

SjPj , (4.20)

where

P0 =

 1 0

0 1

 , P1 =

 1 0

0 −1

 , (4.21)
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P2 =

 0 1

1 0

 , P3 =

 0 −i
i 0

 . (4.22)

More succinctly this relation can be stated as a linear matrix equation;

S = AC , (4.23)

where

A =


1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0

 . (4.24)

Extension of the Stokes vectors to the description of 3D fields can be easily

achieved by considering the set of Gell-Mann matrices Gj (the 3 × 3 analog to the

Pauli matrices);

G0 =


1 0 0

0 1 0

0 0 1

 , G1 =


1 0 0

0 −1 0

0 0 0

 , G2 =


0 1 0

1 0 0

0 0 0

 , (4.25)

G3 =


0 −i 0

i 0 0

0 0 0

 , G4 =


0 0 1

0 0 0

1 0 0

 , G5 =


0 0 −i
0 0 0

i 0 0

 , (4.26)

G6 =


0 0 0

0 0 −i
0 i 0

 , G7 =


0 0 0

0 0 1

0 1 0

 , G8 =


1 0 0

0 1 0

0 0 −2

/√3 . (4.27)

Due to the ordering and form of the Gell-Mann matrices, the Stokes parameters S0,

S1, S2 and S3 have the same physical meaning (i.e. represent components of the

same polarisation) in both the 2D and 3D formulations, except for the fact that the
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total intensity S0 also includes the energy contribution from the longitudinal field

component Ez for the 3D case. Following the same logic as for the 2D case the

generalised Stokes vector is given by Eq. (4.23) except now

A =



1 0 0 0 1 0 0 0 1

1 0 0 0 −1 0 0 0 0

0 1 0 1 0 0 0 0 0

0 −i 0 i 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 0 −i 0 0 0 i 0 0

0 0 0 0 0 −i 0 i 0

0 0 0 0 0 1 0 1 0

1√
3

0 0 0 1√
3

0 0 0 − 2√
3



. (4.28)

The topic of partial polarisation and coherence of arbitrary 3D electromagnetic

fields is still under active international research and debate, with the main difficulty

arising from distinguishing between fully polarised and unpolarised components of

the field [86, 161, 171]. Such debate however does not prove relevant to this thesis.

4.2.5 The Poincaré sphere

In view of Eq. (4.17) a geometric interpretation can be placed on the 2D Stokes

parameters as was first introduced by Poincaré [225]. Specifically for fully polarised

light the Stokes parameters define a position on the surface of a unit sphere, known

as the Poincaré sphere, with spherical polar coordinates (P, π/2− 2ε, 2ϑ) as shown

in Figure 4.1(a). Accordingly linearly polarised states of light are located on the

equator, whilst points on the north (south) pole describe right (left) circularly po-

larised light. The Poincaré sphere exists in a Hilbert space with coordinate axes

{Š1, Š2, Š3}, which shall be referred to as Poincaré space, where Ši = Si/S0 denotes

the normalised Stokes parameters4 for i = 1, 2, 3. Partially polarised states of light

(P < 1) are described by points lying within the sphere, with unpolarised light

ultimately lying at the center of the sphere [7, 35]. The Poincaré sphere has analogs

4The caron notation has been used in contrast to the conventional hat notation, so as to avoid
confusion with that used for statistical estimators.
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Figure 4.1: Schematic of the (a) Poincaré sphere and (b) Stokes cylinder construction
illustrated for linearly polarised light (Š3 = 0). The axis of the cylinder defines the
intensity, S0, axis. Totally polarised states lie on the outer surface of both the Poincaré
sphere and Stokes cylinder (dark shading), with partially polarised states lying inside
(lighter shading).

in different fields of physics, such as the Ewald sphere in scattering theory and the

Bloch sphere in quantum mechanics [267] and all have proven to be powerful analysis

tools.

4.2.6 Stokes space

Difficulties can arise when considering the Poincaré sphere representation of po-

larised light since all four degrees of freedom in S are not suitably depicted. When

describing general partially polarised states it is perhaps more appropriate to con-

sider the Stokes vector as defining a position in a Hilbert space S with coordinate

axes {S0, Š1, Š2, Š3}, which shall be referred to as Stokes space. Physically allowable

Stokes vectors must satisfy the inequality S2
0 ≥ S2

1 +S2
2 +S2

3 as described previously.

Physical Stokes vectors therefore define a hyper-cylinder in Stokes space of unit

radius, with the intensity, S0, defining the axis of the cylinder (see Figure 4.1(b)).

A similar idea was proposed by Tyo [290] in which the coordinate axes were in-

stead defined by {S0, S1, S2, S3} meaning physical Stokes vectors spanned a Stokes

cone. The advantage however of using normalised coordinates is that this produces
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a Hilbert space in which polarisation properties and intensity are orthogonal.

A slice in Stokes space perpendicular to the S0 axis yields the Poincaré sphere,

whilst a cross-section taken perpendicular to the Š3 axis (and through the origin)

produces a hyper-cylinder with unit radius akin to that shown in Figure 4.1(b).

Points on the surface of this Stokes cylinder describe totally linearly polarised light,

whilst points towards the central axis describe partially polarised states. Similar

cross-sections taken perpendicular to Š1 and Š2 also give hyper-cylinders.

Extension of both the Poincaré sphere and Stokes cylinder representation to the

description of 3D fields is fundamentally possible by increasing the dimensions of

the associated Hilbert spaces from 3 (4) to 8 (9), respectively.

4.3 Jones and Mueller polarisation algebras

The capacity to describe (partially) polarised light serves little purpose without

the further ability to propagate it through polarisation sensitive optical systems.

Propagation of polarised light through non-depolarising optical systems, by means

of what is now known as a Jones matrix, was addressed by Jones in his original set of

papers, whilst Mueller later introduced a further matrix formulation to describe the

propagation through depolarising systems [197, 218]. Initially considering only the

propagation of beam like fields (i.e. a 2D treatment) through a single polarisation

element5 the former transforms Jones vectors using 2 × 2 matrices, T, whilst the

latter transforms Stokes vectors by means of 4 × 4 Mueller matrices, M, according

to

Eo = T Ei , (4.29)

So = M Si , (4.30)

where the subscripts i and o denote input and output states. Substituting Eq. (4.29)

into the definition of a coherency matrix (Eq. (4.14)) it can be shown that Jones

matrices can also be used to propagate coherency matrices through an optical system

5An optical element which alters the state of polarisation of the incident light and/or is sensitive
to the incident polarisation state.
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according to

Co = T CiT† . (4.31)

For non-depolarising systems Eqs. (4.16), (4.23) and (4.29) give a relation between

the corresponding Jones and Mueller matrices viz.

M = A(T⊗ T∗)A−1 . (4.32)

It should however be remembered that depolarising systems cannot be described

using a deterministic Jones matrix and hence Eq. (4.32) does not hold in this case,

since T does not exist. Random Jones matrices can describe depolarising systems,

however the relation to the associated Mueller matrix is more complex [143]. Re-

striction to deterministic Jones matrices will therefore be made throughout this

thesis. The Jones and Mueller matrices for some common optical elements are given

in Table 4.2 for reference.

The generalisation of Jones matrices to describe 3D fields was first done heuris-

tically by Török et al. [283, 284] in 1995. They later further extended their work

[106] to include the polarisation altering characteristics of high aperture lenses first

described by Inoue and Kubota [117, 149] and to describe conventional and confocal

polarised light microscopes [277, 282], which will be discussed in Chapter 6.

Following [276], it is possible to define three types of generalised Jones matrices

describing field transformations, interactions with surfaces, and the action of polari-

sation elements, such as retarders and lenses. Since a Jones vector describes a plane

wave it is legitimate to associate with it an optical ray describing the direction of

propagation. In many situations, such as focusing or transmission through a prism,

it is necessary to describe a change in the direction of propagation of a ray of light.

Generally, rotation of a ray is about a direction perpendicular to the meridional

plane6 in which the ray lies. It is thus the field components lying in the meridional

plane which are rotated, whilst the perpendicular component is left unaffected. This

6The plane containing the ray and the optical axis of the system.
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can be simply described by the rotation matrix

L =


cos ∆θ 0 sin ∆θ

0 1 0

− sin ∆θ 0 cos ∆θ

 , (4.33)

where ∆θ is the angle by which the ray is rotated. This matrix can account for a

direction change due to refraction and reflection for example, however if the change

in direction occurs at a surface there will also be a change in amplitude of the

perpendicular, s, and parallel, p, components as given by the Fresnel transmission

and reflection coefficients [18]. This behaviour can be described using the matrices

It =


tp 0 0

0 ts 0

0 0 tp

, Ir =


rp 0 0

0 rs 0

0 0 rp

 . (4.34)

For more complex interfaces, such as stratified media, it is also possible to find

similar matrices, see for example [282]. The matrices L, It and Ir can only be

applied when the electric field is decomposed into its s and p components. This field

transformation requires a simple rotation of the Cartesian coordinate axes about

the optic axis as expressed by the rotation matrix

R =


cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 , (4.35)

where φ is the angle of the meridional plane to the positive x-axis.

Coming finally to the transformations induced by polarisation elements, if the

entrance and exit surfaces of the component are parallel (although possibly oblique

to the incident ray vector) it is assumed, due to experimental experience, that the

direction of propagation of the ray is unaltered except for a potential lateral shift

which is irrelevant for a plane wave. Consequently the longitudinal field component

must be unchanged upon propagation through such a parallel surface component.

Hence the generalised Jones matrix for an ideal linear retarder (Babinet-Soleil com-

98



4.4 Vectorial ray-tracing

pensator) is

BS =


cos δ

2
+ i cos 2γ sin δ

2
i sin 2γ sin δ

2
0

i sin 2γ sin δ
2

cos δ
2
− i cos 2γ sin δ

2
0

0 0 1

 , (4.36)

where γ is the azimuth of the fast axis of the retarder and δ is the relative retardation

between the Ex and Ey component, whilst that for a linear polariser is

LP =


cos2 γ sin γ cos γ 0

sin γ cos γ sin2 γ 0

0 0 1

 . (4.37)

4.4 Vectorial ray-tracing

Practically all optical systems are composed of multiple elements and surfaces through

which light propagates. Analysis of such systems is a significant problem in opti-

cal design. Traditionally geometrical, or ray, techniques would be used in which

arbitrary ray paths through an optical system are traced so as to calculate the aber-

rations present (or any other desired system analysis), for example by means of

ABCD matrices [29]. With the increasing popularity of surface coatings on many

components, thin film calculations became an equally important part of the design

process to incorporate the polarisation transmission properties of these coatings

[29]. Although this combined approach proves adequate for many systems in which

propagation of light can be considered from a scalar viewpoint, the increasing re-

quirement for accurate vectorial modelling of systems, e.g. in high NA imaging, a

more advanced strategy is necessary. Vectorial ray tracing provides a solution to

this problem [184, 300], which, by allowing a ray to represent a vectorial plane wave,

can simultaneous account for both geometrical and polarisation effects. Evidently

the generalised Jones formalism describes the propagation of light in exactly this

way.

Complex optical systems, formed from multiple optical components can be mod-

elled by successive application of generalised Jones matrices, i.e. for a system com-
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prised of N sequential elements with associated Jones matrix Tj the whole system

can be described by the composite Jones matrix

T = TNTN−1 · · ·T2T1 . (4.38)

Vectorial ray tracing through optical components using Jones matrices is advan-

tageous over using Fresnel’s equations at each individual surface of an optical system

(a method used in [101] for example) since it determines an effective single interface

which represents the entire action of the lens. In this way the resulting expressions

are simpler.

Vectorial ray tracing in many circumstances is unfortunately only an approxi-

mate method of modelling optical systems, in much the same way as geometrical

optics cannot accurately model many scalar systems. Nevertheless it has proven of

particular commercial importance having spawned a number of software packages,

e.g. [36]. Furthermore under a number of conditions, which shall be discussed more

fully in the context of focusing of light in the next section, vectorial ray tracing can

be a rigorous calculation tool.

4.5 Focusing of vectorial beams

Focusing in optical systems has been researched in earnest for a myriad of different

scenarios due to the pivotal role lenses play in modern optical setups. The calcula-

tion of the field distribution in the focal region of a high NA lens is an important

problem because of the many applications that use tightly focused beams, such as

optical microscopy, optical data storage and lithography. Focusing of coherent light

under a scalar approximation has been well understood for many years (see for ex-

ample [264]), however when the NA of a lens exceeds approximately 0.5 the field

distribution in the focal region polarisation properties of light play a more impor-

tant role necessitating the use of a full electromagnetic diffraction theory. Even

as early as 1919 focusing of coherent, fully polarised electromagnetic waves could

be described [115], by what is now known as the Debye-Wolf diffraction integral

[234, 317] or modified Fresnel-Kirchhoff diffraction integrals [177]. In more recent

years attention has slowly turned towards focusing of partially coherent light in both
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scalar [65, 164, 239, 301] and vectorial [161, 326] regimes due to its potential use

in lithography, laser fusion and microscopy [84, 138, 158, 295]. Consideration of

the full electromagnetic problem has however been limited to spatially homogeneous

(partial) polarisation across the pupil of the focusing lens. The full and general

treatment of the focusing of inhomogeneous, partially coherent, partially polarised

waves, however, was not addressed until the work of the author [74], the details of

which will be given in the following pages.

4.5.1 Scaled Debye-Wolf diffraction integral

Before focusing of spatially inhomogeneous partially coherent, partially polarised

light can be discussed, it is necessary to first understand the principles of focusing

fully coherent, totally polarised beams (although still potential spatially inhomoge-

neous). For the sake of generality, systems of arbitrary Fresnel number7 are dis-

cussed, however it is also important to consider systems of high NA, since polarisa-

tion effects decrease with NA as has been demonstrated by several authors [83, 280].

Focusing of quasi-monochromatic light in such systems can be described using the

so-called scaled Debye-Wolf diffraction integral which, assuming Kirchhoff’s bound-

ary conditions at a circular aperture on an infinite screen, can be derived directly

from Maxwell’s equations [276] and is given by

E(ρ) = −if
2 exp(ikΦ0)

λ(f + z)

∫∫
s2x+s2y≤1

e(sx, sy) exp(iks ·P)
dsxdsy
sz

, (4.40)

where P = (R cosϕ,R sinϕ,Z) represents the position vector ρ = (ρ cosϕ, ρ sinϕ, z)

of a point of observation in the focal region, in a transformed co-ordinate system

7The Fresnel number of a focusing optical system with circular aperture is defined as

NF =
(
a

f

)2
f

λ
, (4.39)

where a is the radius of the aperture, f is the focal length and λ is the wavelength of the incident
light.
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Figure 4.2: Coordinate system and geometry of the scaled Debye-Wolf diffraction inte-
gral.

where

R =
f

f + z
ρ , (4.41)

Z =
f

f + z
z , (4.42)

s = (sx, sy, sz) = (sin θ cosφ, sin θ sinφ, cos θ) is a unit vector describing the direction

of a ray (see Figure 4.2), f is the focal length of the lens, k = 2π/λ = ω/c is the

wavenumber of light of wavelength λ and frequency ω,

Φ0 = f + z +
ρ2 − 2fz

2(f + z)
, (4.43)

and e(sx, sy) describes the field distribution on the Gaussian reference sphere located

in the exit pupil of the system centered on the geometrical focus of the lens. Implicit

in Eq. (4.40) is the assumption that the point of observation is far from the pupil

plane, such that evanescent waves can be neglected, hence yielding the stated domain

of integration. Noting that an element of solid angle over the reference sphere is

given by

dsxdsy
sz

= sin θdθdφ , (4.44)
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the scaled Debye-Wolf integral can be rewritten

E(ρ, ϕ, z) =− if 2 exp(ikΦ0)

λ(f + z)

×
∫ 2π

0

∫ α

0

e(θ, φ) exp [ikR sin θ cos(φ− ϕ)] eikZ cos θ sin θdθdφ (4.45)

where α is the semi-angle of convergence of the lens, such that the NA (assuming

the lens is in air) is given by NA = sinα.

4.5.1.1 High Fresnel number optical systems

Microscope objective lenses are commonly designed to be telecentric, since this helps

minimise aberrations and to produce a shift invariant point spread function. Con-

sequently, the Fresnel number is also frequently large. Systems of large Fresnel

numbers (whereby R ≈ ρ and Z ≈ z) allow simplification of the scaled Debye-Wolf

integral to

E(ρ, ϕ, z) = −if
λ

∫ 2π

0

∫ α

0

e(θ, φ) exp [ikρ sin θ cos(φ− ϕ)] eikz cos θ sin θdθdφ. (4.46)

Eq. (4.46) is known as the Debye-Wolf integral. An equivalent equation also holds

for the magnetic field vector. Eq. (4.46) is also valid for systems of arbitrary Fresnel

number if z � f .

Interestingly, since the lens is assumed to be telecentric from the image side,

the exit pupil is located at infinity and hence e(θ, φ) must also be specified here.

Specification of the field at infinity is equivalent to specifying the field in the back

focal plane of the lens for a wave with infinitely small wavelength, that is to say it is

only necessary to specify the field at this plane as predicted by geometrical optics as

can be found using vectorial ray tracing. This is precisely the Jones pupil described

in Section 4.2.2.

Consider then the specification of the geometric field distribution e(θ, φ) on the

Gaussian reference sphere as calculated from the Jones pupil of an ideal focusing

system as represented by the spatially dependent Jones vector Ẽ(θ, φ). An ideal

lens acts to rotate a lens by an angle ∆θ = θ (see Figure 4.2) about an axis per-

pendicular to the meridional plane, as can be described by the generalised Jones

103



Chapter 4: Vectorial optics

matrix L(θ) (c.f. Eq. (4.33)). It is however necessary to first decompose the field

into its constituent s and p components using the generalised Jones matrix R(φ).

Accordingly, the field on the reference sphere, as seen from the image side of the

lens, is given by (neglecting skew rays)

e(θ, φ) = a(θ) R−1(φ) · L(θ) · R(φ) · Ẽ(θ, φ) = Q(θ,φ) · Ẽ(θ, φ) , (4.47)

where Q(θ,φ) = a(θ) R−1(φ) · L(θ) · R(φ) and the final rotation R−1 is to transform

from the s and p frame of reference back to the initial Cartesian frame. The scalar

factor a(θ) is an apodisation factor that ensures energy is conserved when projecting

from a plane to a sphere. For example a(θ) =
√

cos θ or a(θ) = 1 if the lens satisfies

the sine or Herschel condition respectively [116]. The Debye-Wolf integral is thus

seen to represent the field in the focal region of a lens as the superposition of vectorial

plane waves of appropriate strength and polarisation.

4.5.1.2 Examples

Through the Debye-Wolf integral it is possible to focus inhomogeneous fully co-

herent, polarised beams. A number of examples are given here to highlight the

characteristics of high NA focusing. An aplanatic lens8 will be assumed throughout.

The first case discussed here is perhaps the most commonly considered in the lit-

erature, namely that of a uniformly linearly polarised beam described by the Jones

vector Ẽ = (Ex, Ey, 0). Expanding Q(θ, φ) gives

Q(θ, φ) =
a(θ)

2


q1 + q2 cos 2φ q2 sin 2φ q3 cosφ

q2 sin 2φ q1 − q2 cos 2φ q3 sinφ

−q3 cosφ −q3 sinφ q4

 , (4.48)

8One satisfying the sine condition.
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where

q1 = cos θ + 1 , (4.49a)

q2 = cos θ − 1 , (4.49b)

q3 = 2 sin θ , (4.49c)

q4 = 2 cos θ , (4.49d)

which in turn yields

e(θ, φ) =


Ex(q1 + q2 cos 2φ) + q2 Ey sin 2φ

Ey(q1 − q2 cos 2φ) + q2 Ey sin 2φ

−q3(Ex cosφ+ Ey sinφ)

 . (4.50)

Using the well-known identity [303]

∫ 2π

0

{
sinmα

cosmα

}
exp [ia cos(α− β)] dα = 2πim

{
sinmβ

cosmβ

}
Jm(a), (4.51)

where Jm(a) is the Bessel function of the first kind of order m, allows the azimuthal

integration to be performed analytically yielding

E(ρ, ϕ, z) = −ikf


Ex(I0 + I2 cos 2φ) + Ey I2 sin 2φ

Ey(I0 − I2 cos 2φ) + Ex I2 sin 2φ

−2iI1(Ex cosφ+ Ey sinφ)

 , (4.52)

where

I0 =

∫ α

0

√
cos θ sin θ(cos θ + 1)J0(kρ sin θ) exp(ikz cos θ)dθ , (4.53)

I1 =

∫ α

0

√
cos θ sin2 θJ1(kρ sin θ) exp(ikz cos θ)dθ , (4.54)

I2 =

∫ α

0

√
cos θ sin θ(cos θ − 1)J2(kρ sin θ) exp(ikz cos θ)dθ . (4.55)

The focused field distribution for an x-polarised incident beam is shown in Fig-

ure 4.3 from which it is seen a non-zero y and z component of polarisation is gener-
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Figure 4.3: (a)–(c) Absolute magnitude of the Cartesian field components (Ex, Ey, Ez)
and (d) optical intensity in the focal plane of a lens of NA = 0.95 for x-polarised illumi-
nation.

ated. Experimental verification of these results has been obtained for the transverse

field components [232]. Determination of the longitudinal field component is more

problematic, however a new technique developed by the author is detailed in Chap-

ter 8.

Figures 4.4 and 4.5 show the focused field distribution for radially and az-

imuthally polarised light for which the incident Jones pupils are given by

Ẽrad(θ, φ) = E0


cosφ

sinφ

0

 , Ẽazi(θ, φ) = E0


sinφ

− cosφ

0

 . (4.56)

Radially polarised beams are becoming increasingly popular because upon focusing

they give a focal spot narrower than the Rayleigh diffraction limit [54]. Azimuthally
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Figure 4.4: (a)–(c) Absolute magnitude of the cylindrical field components (Eρ, Eϕ, Ez)
and (d) optical intensity in the focal plane of a lens of NA = 0.95 for radially polarised
illumination. Whilst Eϕ is identically zero it has been shown for ease of comparison with
Figure 4.5.

polarised beams are equally seeing attention in the literature since upon focus-

ing they produce a focal ring useful, for example, in stimulated emission depletion

(STED) microscopy [104, 280]. Semi-analytic answers, similar to those given for lin-

early polarised input, can be found but will not be given here because more general

expressions are derived in Section 4.5.3 for a partially coherent, partially polarised

scenario.

4.5.2 Focusing of partially polarised, partially coherent light

Denoting the CSDM in the focal region of a lens as

W(ρ1,ρ2, ω) ≡ 〈E(ρ1, ω)E†(ρ2, ω)〉 , (4.57)
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Figure 4.5: (a)–(c) Absolute magnitude of the cylindrical field components (Eρ, Eϕ, Ez)
and (d) optical intensity in the focal plane of a lens of NA = 0.95 for azimuthally-polarised
illumination. Whilst Eρ and Ez are identically zero they have been shown for ease of
comparison with Figure 4.4.

and similarly for the CSDM in other domains in the optical system the problem of

focusing spatially inhomogeneous, partially coherent, partially polarised light is now

considered (see Table 4.3 for a summary of the notation used for the CSDM and

other related quantities at different points in the focusing system).

Given Eq. (4.57) and the scaled Debye-Wolf integral (Eq. (4.45)) it is a simple

matter to determine the CSDM for light focused by a lens. Substitution yields

W(ρ1,ρ2) = K1K
∗
2

∫ 2π

0

∫ 2π

0

∫ α

0

∫ α

0

〈e(θ1, φ1)e†(θ2, φ2)〉 exp [ik∆12]

× exp [ik(Z1 cos θ1 − Z2 cos θ2)] sin θ1 sin θ2dθ1dθ2dφ1dφ2 ,

(4.58)

where Kl = − ikf2

2π(f+zl)
exp(ikΦ0) and ∆12 = R1 sin θ1 cos(φ1−ϕ1)−R2 sin θ2 cos(φ2−
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Reference Back focal Focal
sphere plane region

Coordinates {θ, φ} {θ, φ} ρ = {ρ, ϕ, z}

Electric field vector e(θ, φ) Ẽ(θ, φ) E(ρ)

Cross-spectral density matrix W(θ1, φ1, θ2, φ2) W̃(θ1, φ1, θ2, φ2) W(ρ1,ρ2)

Scalar-based coherent mode ψ
(i)
n (θ, φ) ψ̃

(i)
n (θ, φ) χ

(i)
n (ρ)

Vector-based coherent mode Ψn(θ, φ) Ψ̃n(θ, φ) χ̌n(ρ)

Table 4.3: Summary of notation used when considering focusing of spatially inhomoge-
neous partially polarised, partially coherent light.

ϕ2). Knowledge of the CSDM in a single transverse plane is sufficient to calculate

the CSDM on any transverse plane in the focal region via, for example, the Wolf

equations [321]. Henceforth, the simplifying assumption that Z1 = Z2 = Z will

be made, i.e. attention shall be restricted to a single plane in the focal region.

Consequently K1 = K2 = K also follows.

Finally defining the CSDM on the Gaussian reference sphere in an analogous

way to Eq. (4.57), such that W(θ1, φ1, θ2, φ2) = 〈e(θ1, φ1)e†(θ2, φ2)〉 gives

W(ρ1,ρ2) = |K|2
∫ 2π

0

∫ 2π

0

∫ α

0

∫ α

0

W(θ1, φ1, θ2, φ2) exp [ik∆12]

× exp [ikZ(cos θ1 − cos θ2)] sin θ1 sin θ2dθ1dθ2dφ1dφ2 . (4.59)

In some applications it may be more useful to define the focused CSDM in

terms of the CSDM in the back-focal plane of the lens denoted W̃(θ1, φ1, θ2, φ2) =

〈Ẽ(θ1, φ1)Ẽ†(θ2, φ2)〉. Using this definition and Eq. (4.47) gives

W(θ1, φ1, θ2, φ2) = Q(θ1, φ1) · W̃(θ1, φ1, θ2, φ2) ·Q†(θ2, φ2) . (4.60)

Substituting Eq. (4.60) in Eq. (4.59) yields

W(ρ1,ρ2) = |K|2
∫ 2π

0

∫ 2π

0

∫ α

0

∫ α

0

Q(θ1, φ1) · W̃(θ1, φ1, θ2, φ2) ·Q†(θ2, φ2) exp [ik∆12]

× exp [ikZ(cos θ1 − cos θ2)] sin θ1 sin θ2dθ1dθ2dφ1dφ2 . (4.61)
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Eqs. (4.59) and (4.61) are the key results of this section. In what follows various cases

are considered, under which these integrals simplify from the four-fold integrals given

to separable two-fold integrals (Section 4.5.2.1), or even under certain symmetry

assumptions, single integrals (Section 4.5.2.2).

4.5.2.1 Coherent mode representations

Scalar coherent mode expansions in optical coherence theory (see e.g. [321] for a

fuller discussion) were perhaps first pioneered by Wolf [318], but have seen fervent

use by other authors e.g. [68, 217, 295]. It should however be noted that all such

theories derive from Karhunen-Loéve theory [137, 165] which has been employed in

statistics since the 1940’s. Karhunen-Loéve theory states that given a (Hermitian,

non-negative definite, square integrable) scalar correlation function over a closed

domain D, such as the cross-spectral density function W (ρ1,ρ2, ω), it is possible

to expand it in terms of an infinite, orthonormal set of coherent modes, ψn(ρ, ω),

according to

W (ρ1,ρ2) =
∞∑
n=0

λnψ
∗
n(ρ1)ψn(ρ2) , (4.62)

where the coherent modes and associated expansion coefficients λn(ω) are found by

solution of the Fredholm integral equation∫
D
W (ρ1,ρ2)ψn(ρ1)dρ1 = λnψn(ρ2) . (4.63)

Extension of existing scalar results to a treatment of the full electromagnetic

problem is however more controversial, with two opposing schools of thought de-

bating the appropriate form of coherent mode expansions for 2D (3D) fields. Both

of the alternative formalisms, which shall be termed the scalar- and vector based

formalisms respectively, are considered here.

The first, scalar-based interpretation applies the scalar formulation described

above to each field component individually, hence requiring the solution of two

(three) uncoupled Fredholm integral equations of the form of Eq. (4.63). Accordingly
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the individual elements of a general CSDM are expressed in the form [321]

Wij(ρ1,ρ2) =


∞∑
n=0

λ
(i)
n ψ

(i)
n

∗
(ρ1)ψ

(i)
n (ρ2) for i = j ,

∞∑
n=0

∞∑
m=0

Λ
(ij)
nmψ

(i)
n

∗
(ρ1)ψ

(j)
m (ρ2) for i 6= j ,

(4.64)

where Wij(ρ1,ρ2) is the (i, j)th element of W(ρ1,ρ2) and the expansion coefficients

for off-diagonal terms, Λ
(ij)
nm , are found according to the integral

Λ(ij)
nm =

∫
D

∫
D
ψ(i)
n (ρ1)Wij(ρ1,ρ2)ψ(j)

m

∗
(ρ2)dρ1dρ2 . (4.65)

Alternatively the vector-based formalism solves the Fredholm integral equation

with matrix-valued kernel∫
D

W(ρ1,ρ2)Ψn(ρ1)dρ1 = λnΨn(ρ2) (4.66)

to find vectorial coherent modes [91, 272], such that

W(ρ1,ρ2) =
∞∑
n=0

λnΨn(ρ1)Ψ†n(ρ2) (4.67)

Although this approach is more mathematically involved, since it requires the solu-

tion of two (three) coupled scalar Fredholm integral equations, it does express the

off-diagonal elements more concisely.

Motivated by the analytic advantages frequently afforded by use of coherent

mode expansions, they are now used to describe focusing of partially polarised,

partially coherent light. Furthermore, expansions of the CSDMs W(θ1, φ1, θ2, φ2) on

the reference sphere and W̃(θ1, φ1, θ2, φ2) in the back focal plane will be considered.

Consider first the scalar-based expansion of W(θ1, φ1, θ2, φ2). Using Eq. (4.59)

immediately gives

Wij(ρ1,ρ2) = |K|2
∞∑
n=0

λ(i)
n

∫ 2π

0

∫ 2π

0

∫ α

0

∫ α

0

ψ(i)
n

∗
(θ1, φ1)ψ(i)

n (θ2, φ2) exp [ik∆12]

× exp [ikZ(cos θ1 − cos θ2)] sin θ1 sin θ2dθ1dθ2dφ1dφ2 ,
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for i = j and

Wij(ρ1,ρ2) = |K|2
∞∑
n=0

∞∑
m=0

Λ(ij)
nm

∫ 2π

0

∫ 2π

0

∫ α

0

∫ α

0

ψ(i)
n

∗
(θ1, φ1)ψ(j)

m (θ2, φ2) exp [ik∆12]

× exp [ikZ(cos θ1 − cos θ2)] sin θ1 sin θ2dθ1dθ2dφ1dφ2 ,

for i 6= j. Letting

χ(i)
n (ρl) = K

∫ 2π

0

∫ α

0

ψ(i)
n

∗
(θl, φl) exp [ikRl sin θl cos(φl − ϕl)] eikZ cos θl sin θldθldφl ,

(4.68)

gives

Wij(ρ1,ρ2) =


∞∑
n=0

λ
(i)
n χ

(i)
n

∗
(ρ1)χ

(i)
n (ρ2) for i = j ,

∞∑
n=0

∞∑
m=0

Λ
(ij)
nm χ

(i)
n

∗
(ρ1)χ

(j)
m (ρ2) for i 6= j .

(4.69)

For a vector-based expansion of W(θ1, φ1, θ2, φ2) in terms of the set of coherent

modes Ψn(θ, φ) similar results follow, specifically

W(ρ1,ρ2) =
∞∑
n=0

λn χn(ρ1)χ†n(ρ2) , (4.70)

where

χn(ρl) = K

∫ 2π

0

∫ α

0

Ψn(θl, φl) exp [ikRl sin θl cos(φl − ϕl)] eikZ cos θl sin θldθldφl .

(4.71)

Comparing Eqs. (4.69) and (4.70) to the definition of the scalar- and vector-based

expansions given by Eqs. (4.64) and (4.67) respectively, it is apparent that the scalar

(vector) coherent modes in the focal region can be found by focusing the coherent

modes on the reference sphere by use of the scaled Debye-Wolf integral with scalar

(vector) kernel. This result is expected because by construction the modes are fully

spatially and temporally coherent in addition to being statistically uncorrelated

[321]. Consequently each coherent mode can be propagated independently using

112



4.5 Focusing of vectorial beams

more familiar ideas from coherent optical theories. It should however be noted that∫ 2π

0

∫ ∞
0

χ†n(ρl)χm(ρl)RldRldϕl = KlK
∗
l δnm , (4.72)

meaning that to maintain orthonormality it is necessary to normalise by the factor

|K|, which yields the alternative, albeit equivalent, expansion

W(ρ1,ρ2) =
∞∑
n=0

λn|K|2 χ̌n(ρ1)χ̌†n(ρ2) , (4.73)

where χ̌n(ρ) denotes a renormalised coherent mode.

Finally consider coherent mode expansions of the CSDM W̃(θ1, φ1, θ2, φ2) in the

back focal plane. The scalar and vector based coherent modes are denoted ψ̃
(i)
n (θ, φ)

and Ψ̃n(θ, φ) respectively. To formulate this problem the coherent modes on the

reference sphere need only be related to those in the back focal plane. For the

vector-based expansion Eq. (4.60) gives Ψn(θ, φ) = Q(θ,φ) · Ψ̃n(θ, φ). When consid-

ering the scalar-based expansion however the mixing of the elements of the CSDM

caused by the transformation of Eq. (4.60) means that the focused CSDM cannot be

expressed in the form of Eq. (4.69). The lack of a simple, analytic correspondence

between the coherent modes in the back focal plane and those in the focal region

hence suggests that a scalar-based coherent mode expansion is unsuitable for focus-

ing in electromagnetic problems. Consequently only vector-based expansions will be

considered in the subsequent derivations.

At this juncture it is convenient to define a number of different metrics, commonly

used to describe partially coherent light. There is again much dispute regarding

the appropriateness and meaning of these quantities, however such discussions are

disregarded here. Instead the implications of focusing in terms of each metric are

examined. In particular consider the degree of spectral coherence defined in [31] as

|η(ρ1,ρ2)|2 =
tr[W(ρ1,ρ2)]2

tr[W(ρ1,ρ1)] tr[W(ρ2,ρ2)]
, (4.74)
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and the degree of spectral coherence defined in [272] as

ζ2(ρ1,ρ2) =
‖W(ρ1,ρ2)‖2

F

tr[W(ρ1,ρ1)] tr[W(ρ2,ρ2)]
, (4.75)

where tr[· · · ] and ‖ · · · ‖F denote the matrix trace and Frobenius norm respectively.

Analogous definitions hold for the light before focusing. Since the CSDM will in

general change upon focusing, then so too will the associated degrees of spectral

coherence η and ζ. Numerical examples of this will be given in Section 4.5.3 however

it is informative to consider the effective degree of coherence, ζ̄, over the domain D
for a general CSDM, as defined in [272] by

ζ̄2 =

∫
D

∫
D ‖W(ρ1,ρ2)‖2

Fdρ1dρ2∫
D tr[W(ρ1,ρ1)]dρ1

∫
D tr[W(ρ2,ρ2)]dρ2

. (4.76)

Before and after focusing ζ̄2 evaluates to
∑∞

n=0 λ
2
n/[
∑∞

n=0 λn]
2

and it is therefore

possible to conclude that the effective degree of spectral coherence ζ̄ is unchanged

upon focusing. Unfortunately no conservation rule holds for η̄2, which could be

defined in an analogous way, again highlighting the question over the appropriateness

and meaning of each parameter.

4.5.2.2 Harmonic angular dependence

Further simplifications of the focusing integrals of Eqs. (4.59) and (4.61) can be made

if certain symmetry conditions hold. In particular the azimuthal integration can be

evaluated analytically when the coherent modes (on either the reference sphere or the

back focal plane) have a harmonic angular dependence i.e. Ψn(θ, φ) = Ψn(θ) sinmφ

or Ψn(θ) cosmφ and similarly for Ψ̃n(θ, φ), where m is a non-negative integer.

To consider the assertion of harmonic angular dependence on the reference sphere

it is sufficient to consider the χn(ρl) integrals of Eq. (4.71) such that

χI
n(ρl) = K

∫ 2π

0

∫ α

0

Ψn(θl)

{
sinmφl

cosmφl

}
× exp [ikRl sin θl cos(φl − ϕl)] eikZ cos θl sin θldθldφl . (4.77)
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Employing Eq. (4.51) gives

χI
n(ρl) = 2πimK

{
sinmϕl

cosmϕl

}∫ α

0

Ψn(θl)Jm (kRl sin θl) e
ikZ cos θl sin θl dθl . (4.78)

Alternatively when considering coherent modes on the back focal plane

χII
n (ρl) = K

∫ 2π

0

∫ α

0

Q(θl, φl)Ψ̃n(θl)

{
sinmφl

cosmφl

}
× exp[ikRl sin θl cos(φl − ϕl)]eikZ cos θl sin θldθldφl . (4.79)

Including the explicit form of Q(θ, φ) and analytically performing the integration of

φl gives

χII
n (ρl) =

K

2


Θn,x,s

2,−m,2 −Θn,y,c
2,−m,2 − iΘ

n,z,s
1,−m,3 + 2Θn,x,s

0,m,1 + iΘn,z,s
1,m,3 −Θn,x,s

2,m,2 + Θn,y,c
2,m,2

−Θn,x,c
2,−m,2 −Θn,y,s

2,−m,2 + iΘn,z,c
1,−m,3 + 2Θn,y,s

0,m,1 − iΘ
n,z,c
1,m,3 + Θn,x,c

2,m,2 + Θn,y,s
2,m,2

iΘn,x,s
1,−m,3 − iΘ

n,y,c
1,−m,3 + 2Θn,z,s

0,m,4 − iΘ
n,x,s
1,m,3 + iΘn,y,c

1,m,3


(4.80)

for a sinusoidal angular dependence, or

χII
n (ρl) =

K

2


−Θn,x,c

2,−m,2 −Θn,y,s
2,−m,2 + iΘn,z,c

1,−m,3 + 2Θn,x,c
0,m,1 + iΘn,z,c

1,m,3 −Θn,x,c
2,m,2 −Θn,y,s

2,m,2

−Θn,x,s
2,−m,2 + Θn,y,c

2,−m,2 + iΘn,z,s
1,−m,3 + 2Θn,y,c

0,m,1 + iΘn,z,s
1,m,3 −Θn,xs

2,m,2 + Θn,y,c
2,m,2

−iΘn,x,c
1,−m,3 − iΘ

n,y,s
1,−m,3 + 2Θn,z,c

0,m,4 − iΘ
n,x,c
1,m,3 − iΘ

n,y,s
1,m,3


(4.81)

for a cosinusoidal angular dependence, where

Θn,ν,t
q,±m,u(ρl) = 2πi±m

{
sin(q ±m)ϕl

cos(q ±m)ϕl

}
×
∫ α

0

a(θl)Ψ̃
ν
n(θl)pu sin θlJq±m(kRl sin θl)e

ikZ cos θldθl , (4.82)

Ψ̃ν
n denotes the νth component of Ψ̃n and the sin (cos) term is taken for t = s (c).

Evaluation of the single integrals of Eq. (4.82) is all that is necessary to calculate
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the CSDM of focused, inhomogeneous, partially polarised, partially coherent light

for which the coherent modes have a harmonic angular dependence.

In coherence calculations the assumption of a circularly symmetric CSDM is often

made (whereby either W(θ1, φ1, θ2, φ2) = W(θ1, θ2) or W̃(θ1, φ1, θ2, φ2) = W̃(θ1, θ2))

because it allows the dimensionality of analysis to be reduced. Circular symmetry in

the CSDM is inherited by the coherent modes and hence this frequently considered

scenario is given as a special case (m = 0) of the preceding analysis. It has however

been demonstrated that even under less stringent assumptions the dimensionality of

the problem can still be reduced. Finally, it should be noted that in the preceding

analysis it was assumed that each field component of the vector based coherent

modes had the same harmonic behaviour. This assumption is however not required

since Eq. (4.51) can still be used to form a family of integrals similar to that defined

by Eq. (4.82). An example of this type is considered in the next section.

4.5.3 Examples

4.5.3.1 Radially polarised Laguerre-Gauss modes

By way of example consider a beam-like source formed by the superposition of

mutually uncorrelated, radially polarised Laguerre-Gauss modes located in the back

focal plane of a lens. Laguerre-Gauss modes, can for example be obtained from laser

cavities with circular geometries [47]. In this scenario the CSDM in the back focal

plane is of the form W̃(θ1, φ1, θ2, φ2) =
∑∞

n=0 λnΨ̃n(θ1, φ1)Ψ̃
†
n(θ2, φ2) where

Ψ̃n(θ, φ) = Ψ̃n(θ)


cosφ

sinφ

0

 , (4.83)

and

Ψ̃n(θ) =

(
2

πµ2

)1/2

Ln

(
2 sin2 θ

µ2

)
exp

(
−sin2 θ

µ2

)
. (4.84)

Ln represents the nth order Laguerre polynomial and µ is a frequency dependent pa-

rameter. Further consider the case discussed in [96] for which λn = π(1−q2)q2n/2µ2

116



4.5 Focusing of vectorial beams

for 0 < q < 1. The parameter µ is a measure of the beam diameter measured

in focal lengths, whilst q determines the effective degree of spectral coherence via

ζ̄2 = (1 − q2)/(1 + q2), with the limits q → 0 (q → 1) giving a fully spatially

(un)correlated source. The beam diameter as specified by µ will be held constant

throughout the remainder of this work to avoid extraneous effects resulting from a

different apodisation of the beam.

Following the analysis given in Section 4.5.2.2 the focused coherent modes are

found to be

χII
n (ρl) = K


(Θn

0,1,1 −Θn
2,−1,2) cosϕ

(Θn
0,1,1 −Θn

2,−1,2) sinϕ

−iΘn
1,−1,3

 , (4.85)

where

Θn
0,1,1(ρl) = 2πi

∫ α

0

a(θl)Ψ̃n(θl)(cos θl + 1) sin θlJ1(kRl sin θl)e
ikZ cos θldθl , (4.86)

Θn
2,−1,2(ρl) = −2πi

∫ α

0

a(θl)Ψ̃n(θl)(cos θl − 1) sin θlJ1(kRl sin θl)e
ikZ cos θldθl , (4.87)

Θn
1,−1,3(ρl) = −4πi

∫ α

0

a(θl)Ψ̃n(θl) sin2 θlJ0(kRl sin θl)e
ikZ cos θldθl . (4.88)

Using these coherent modes it is possible to calculate the focal intensity distribution

for sources of differing effective degree of spectral coherence ζ̄. In Figure 4.6 trans-

verse line scans (ϕ = 0, Z = 0) for sources with ζ̄ = 0, 1/3 and 2/3 are plotted.

Although there is little effect on the width of the transverse profile it is noted with

reference to Figure 4.7 that there is a modest extension in the depth of field as

the source becomes more incoherent. There is also a slight increase in the energy

density in the wings of the transverse profile. Due to the apodisation over the pupil

the focal spot is broader than that for uniform intensity since the contribution from

the longitudinal field component, responsible for the narrow spot for the unapodised

case, is reduced.

Figures 4.8(a) and (c) show plots of the degrees of spectral coherence, η and

ζ, between points located along the positive x-axis (φ1 = φ2 = 0) in the focal

plane. Unity degree of coherence between two points implies that were the fields
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(b) (e)
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Figure 4.6: Radial line scans (ϕ = 0) and full transverse focused intensity distributions
for a radially polarised beam source for (a) ζ̄ = 0 (q = 0, coherent), (b) ζ̄ = 1/3 (q = 0.62)
and (c) ζ̄ = 2/3 (q = 0.89). Similar line scans for an azimuthally polarised beam ((d),
(e) and (f)). For numerical calculations an aplanatic lens of numerical aperture 0.97 was
assumed. Furthermore the values µ = 1 and λ = 405 nm were used. Note that peak
intensity has been normalised to unity in all cases for easy comparison.

from these points brought together, the resulting interference fringes would have

maximum visibility. Consequently if ρ1 = ρ2 then η automatically evaluates to

unity as can be seen along the dashed line in Figure 4.8(a). However this is not

in general true for ζ, since this also measures the correlations between individual

components of the electric field. The rotation of the electric field vector by a lens

can introduce differing stochastic behaviour in orthogonal field components, hence

resulting in the possibility of ζ(ρ,ρ) 6= 1 as can be seen along the diagonal in

Figure 4.8. The differences between the two metrics are more fully discussed in [31].
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Figure 4.7: Normalised axial focal intensity distributions (ϕ = 0) for partially coherent
radially polarised collimated sources with differing effective degrees of spectral coherence
as specified by ζ̄ = 0 (top), ζ̄ = 1/3 (centre) and ζ̄ = 2/3 (bottom). Other simulation
parameters used were the same as in Figure 4.6.

4.5.3.2 Azimuthally polarised Laguerre-Gauss modes

For azimuthally polarised beams the vectorial coherent modes are assumed to be of

the form,

Ψ̃n(θ, φ) = Ψ̃n(θ)


sinφ

− cosφ

0

 , (4.89)
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Figure 4.8: Plots of the degrees of coherence, |η| (top) and ζ (bottom), between two
points x1 and x2 on the positive x-axis in the focal plane for focused partially coherent
radially (left) and azimuthally (right) polarised collimated light. A value of q = 0.62 was
used, whilst other simulation parameters were the same as in Figure 4.6.

which in the focal region yields

χII
n (ρl) = K


(Θn

0,1,1 + Θn
2,−1,2) sinϕ

−(Θn
0,1,1 + Θn

2,−1,2) cosϕ

0

 . (4.90)

Again transverse line scans of the focal intensity distribution are shown in Figure 4.6,

whilst the axial intensity distribution is shown in Figure 4.9. Similar conclusions

to those made for the radially polarised source can be drawn for an azimuthally

polarised source, however the augmentation of the wings of the transverse intensity

profile is more pronounced. Figures 4.8(b) and (d) again show plots of the degrees
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Figure 4.9: Normalised axial focal intensity distributions in the same manner as Fig-
ure 4.7 for partially coherent azimuthally polarised collimated sources with differing effec-
tive degrees of spectral coherence.

of spectral coherence, η and ζ, between points located along the positive x-axis in

the focal plane. For azimuthally polarised illumination the resulting plots are very

similar, because along the x-axis the focused coherent modes are purely y-polarised.

4.6 Conclusions

Having started from the foundation of electromagnetism as encapsulated in Maxwell’s

equations, this chapter set out to detail many facets of vectorial optics. The po-
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larisation state of optical waves has been defined and numerous alternative repre-

sentations considered, from which it was found each has its own merits and flaws.

In particular, representations such as Jones vectors are incapable of fully specifying

the nature of statistical sources. In this vein, further representations stemming from

a parameterisation of the second order source statistics were introduced, including

the coherency and Stokes vectors. With an eye to requirements in focusing systems

in which the field in the focal region of a lens is fundamentally 3D in nature the

conventional 2D treatments were extended to describe 3D fields.

Similarly, two algebraic frameworks within which polarised light can be prop-

agated through non-depolarising and depolarising optical systems were discussed,

including the 3D extension, namely those of Jones and Mueller. The generalised

Jones matrix formalism is unfortunately intrinsically a geometric ray method (i.e.

diffraction effects are neglected) and hence only approximate in many scenarios.

However, it was also seen that this formalism can frequently be used to rigorously

calculate boundary conditions for diffraction integrals, which allow the full vectorial

wave nature of light to be modelled. As such, new work by the author was detailed

in which a general description of focusing of partially polarised, partially coherent

electromagnetic waves capable of handling spatially inhomogeneous statistical prop-

erties across the pupil of the focusing lens(es) was developed. This was achieved by

use of the scaled Debye-Wolf diffraction integral, which places few constraints on

the system geometry since it is valid for high NA lenses of arbitrary Fresnel number.

Computationally, the integration routines required to focus beams with arbitrary

coherence and polarisation properties are expensive. By employing a coherent mode

representation of the CSDM it is however possible to reduce the four-dimensional

integrals to two-dimensional ones allowing substantial computational gains to be

made. Analysis of the focusing operation was performed in terms of the CSDM

across both the Gaussian reference sphere and the back focal plane in terms of

scalar- and vector-based coherent modes, since both are frequently used in optical

calculations. It was found however that due to mixing of different components of

the electric field that occurs in high NA optical systems scalar-based coherent mode

expansions can be unsuitable. It was also shown that the effective degree of spectral

coherence ζ̄ of an electromagnetic beam is unchanged upon focusing, although no
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equivalent result can be found for the alternative metric found in the literature,

namely η̄.

The imposition of circular symmetry is often made in the analysis of optical

systems to make calculations more mathematically tractable and to reduce the di-

mensionality of the problem. Via the coherent mode expansions detailed these

benefits are still realisable with the less stringent requirement of a harmonic angular

dependence, as was highlighted by a number of examples.

As a final comment, although this chapter has concentrated solely on the second-

order statistical properties as encapsulated by the CSDM, it is in principle possible

to extend Eqs. (4.59) and (4.61) to calculate higher order statistical moments of

focused light. Since knowledge of all the moments of a random process provides

a full description of the process it is thus possible to fully account for the effect

of focusing on randomly fluctuating, electromagnetic waves, within the framework

discussed.
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Chapter 5

Information in polarimetry

Measure what is measurable, and make measurable
what is not so.

Galileo Galilei

5.1 Polarimetry

Polarimetry is the study and measurement of the polarisation state of light and is

a popular and useful tool in science today. Applications vary from astronomy, mi-

croscopy and biomedical diagnosis [212, 231] to more fundamental crystallographic,

material and single molecule studies [58, 257]. Polarisation can also be utilised in

quantum cryptography and communication [255]. Although measurement of the

state of polarisation of light is often an important objective [85, 274] such polari-

metric techniques are also frequently used to obtain information about an optical

system, such as its birefringence [35]. One may then subdivide polarimetry into two

broad categories: Stokes polarimetry and Mueller polarimetry. The former entails

measuring the four Stokes parameters of light, whilst the latter is intended to mea-

sure the full Mueller matrix of a sample from which parameters of interest can then

be inferred.

During the course of this chapter the performance characteristics of both Stokes
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and Mueller polarimeters will be investigated and optimised. After a brief intro-

duction to the system model of Stokes and Mueller polarimeters, the concept of

polarisation resolution will be introduced and formally quantified in Section 5.2.

Polarisation resolution in turn allows further performance metrics to be defined,

such as the degrees of freedom (or accuracy) in a polarimetric measurement, as may

be appropriate for characterisation of polarisation multiplexed systems, and the ef-

ficiency of observation, which quantifies the light levels required to achieve a given

resolution. The efficiency of observation is particularly pertinent when performing

polarimetric measurements with a limited photon budget, as can arise for example

in astronomy or single molecule studies. A number of existing polarimeter architec-

tures are then assessed in Section 5.2.3 using these new informational metrics.

Section 5.3 proceeds to use the proposed figures of merit as a grounds for opti-

misation of polarimeters. Furthermore, by use of the Bayesian methods introduced

in Chapter 3, it is possible to complement the optimisation procedure with proba-

bilistic a priori information. Again a number of examples, including a polarimetric

matched filter and a linear polarimeter, are given to illustrate the algorithm in

Section 5.3.1.

The optimisation framework is detailed in terms of the estimation of the Stokes

vector of the incident light or Mueller matrix of a sample. Extension to inference of

alternative polarimetric parameters, such as birefringence, is however considered in

Section 5.3.2, and can also be used to describe the inherent noise propagation and

amplification in signal processing. Illustration of the latter is provided by considering

the popular Lu-Chipman polar decomposition of a Mueller matrix in Section 5.4.

5.1.1 Stokes polarimetry

When polarised light is transmitted through a polarisation state analyser (PSA) the

transmitted intensity D can be found by projecting the input Stokes vector onto

a measurement vector T = (1, T1, T2, T3)T/2 (T ∈ S), as defined by the analyser

configuration, whereby D = T T ·S. Here T is normalised such that T 2
1 +T 2

2 +T 2
3 = 1

so that the transmitted intensity 0 ≤ D ≤ S0 i.e. to ensure the analyser is passive.

With prior knowledge of the analysing state, as can be deduced from the polarisation

elements present in the PSA, it would theoretically be possible to estimate the Stokes
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vector of the incident light. In general however, multiple measurements are made to

improve accuracy and remove ambiguities that may exist. For example a division of

amplitude polarimeter (DOAP), as originally proposed by Azzam [6], uses at least

four different analysers simultaneously, whilst a null ellipsometer uses an analyser

which is varied between sequential measurements [7]. Arranging the ND respective

transmitted intensities into an intensity vector D = (D1, D2, . . . , DND), the series of

measurements can be described by the matrix equation

D = T S , (5.1)

where T is a ND × 4 instrument matrix with rows corresponding to the ND mea-

surement states (see Figure 5.1).

PSA DetectorsPSG Sample

Figure 5.1: Block diagram of a polarimetric measurement.

To ensure that Eq. (5.1) can describe both sequential or simultaneous mea-

surements it is necessary to introduce a further diagonal matrix V to account for

the beam splitting required for simultaneous measurements such that D = V T S.

Conservation of energy (assuming ideal optical elements) dictates that for multiple

simultaneous measurements tr[V] = 1. Alternatively if D is formed from ND sequen-

tial measurements then V = I where I is the ND×ND identity matrix. Realistically,

energy will be lost during propagation through an optical system from absorption

and scattering for example. Consequently tr[V] can then be used as a measure of

the light efficiency of the PSA.

Given a set of noiseless intensities it is possible to deduce the state of polarisation

of the incident light by application of the inverse operation i.e.

S = [V T ]+D , (5.2)

127



Chapter 5: Information in polarimetry

where + denotes the Moore-Penrose pseudoinverse [194, 221] of a matrix. In the

presence of noise the pseudoinverse given by Eq. (5.2) gives the minimum least

square error estimator. For Gaussian noise the minimum least square error estimator

is equivalent to the the MLE [139], however this correspondence is not maintained

for Poisson noise. The MLE must then be calculated as discussed in Section 3.2.2.2,

although use of Eq. (5.2) still gives estimates of S with reasonable accuracy.

Although division of wavefront polarimeters (DOWPs) [39] can also be used

for polarimetric measurements this arrangement is neglected in this work since it

requires beams that are uniformly polarised and that the beam intensity profile be

known a priori ; conditions which are generally not achieved in practice. DOWPs

are hence rarely used.

5.1.2 Mueller polarimetry

A Mueller polarimeter builds on the principle of a Stokes polarimeter by addition of

a polarisation state generator (PSG) and a sample to the optical setup as shown in

Figure 5.1. The action of the sample on the incident polarised light can be described

by a 4×4 Mueller matrix M such that the light incident into the DOAP is described

by the Stokes vector

S = MR , (5.3)

where R is the Stokes vector of the illuminating beam. Since the Mueller matrix

has 16 elements, all of which must in general be determined, it is not sufficient to

illuminate using a single polarisation state. At minimum four distinct polarisation

states must be used to illuminate the sample, so as to give the necessary set of 16

simultaneous equations. In general R can thus be written as a 4 × NR matrix, R,

NR ≥ 4 whose columns are the Stokes vectors of the input states. Consequently D

becomes a ND×NR matrix, D, whose columns correspond to the vector of detected

intensities for each input polarisation state. Hence

D = V T M R , (5.4)
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from which the Mueller matrix can be found using the inverse operations, i.e.

M = [V T]+D R+. (5.5)

5.2 Polarisation resolution

Spatial resolution in optical imaging systems is a well known and frequently em-

ployed concept in system design and evaluation. Multiple metrics of spatial resolu-

tion have been defined ranging from the more traditional Abbe (Rayleigh) criterion

for (in)coherent optical systems1, or the highest transmitted spatial frequency [88],

to more recent, specialised metrics, such as localisation accuracy which quantifies

the smallest estimable distance between two point sources [210, 229]. A resolution

metric for polarimetric systems is however lacking in the literature. Accordingly this

section employs the ideas introduced in Chapter 3 to formulate a suitable definition.

Resolution, by any definition, aims to encapsulate the limits to which something

can be measured. Consider for example Rayleigh’s resolution criterion, which quan-

tifies the minimum angular separation between which two point objects, imaged by

an incoherent diffraction limited imaging system, appear separated. Specifically,

Rayleigh’s criterion states that this minimum separation occurs when the first min-

imum in the image of one point (an Airy pattern for a circularly symmetric system

with unobstructed pupil) coincides with the maximum of the image of the second

point object. Although theoretically in a noiseless system two point objects can be

infinitely resolved, for example by deconvolving the image with the point spread

function of the system, Rayleigh’s criterion implicitly (although arbitrarily) makes

an assumption of the minimum change of intensity that can be measured, and hence

the extent to which the central depression in the total intensity profile can be dis-

tinguished. Accordingly, separations smaller than that given by Rayleigh’s criterion

are said to be unmeasurable. The resolution of a system is therefore synonymous

with a region of uncertainty in measurement space.

In Chapter 3 ellipsoids of concentration were introduced in statistical inference

problems. The enclosed hyper-volume of these ellipsoids can be used to define a

1Abbe’s criterion is also applicable to incoherent systems.
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resolution in the Hilbert space associated with the estimation process. Specialising

to polarimetry, the measurement problem can be considered as the estimation of

a position in the 4D Stokes (or an analogous 16D Mueller) space. To introduce

polarisation resolution it is sufficient to consider only Stokes polarimetry, since the

mathematical formulation for Mueller polarimetry is identical (although higher di-

mensional in nature) and hence provides no further insight. Using Eq. (3.31), with

Nw = 4 and V4 = π2/2, i.e. the volume of the 4D unit hyper-sphere, the resolution

in Stokes space is given by

Vw =
π2

2

√
c4

|Jrw|
, (5.6)

where Jrw is the FIM associated with estimation of the parameter vector w =

(Š1, Š2, Š3, S0) (the reordering is for later convenience). A suitable choice of c in

this definition is no less arbitrary than, for example, the Rayleigh criterion, as it is

merely a measure of what is acceptable to the end user. A value of 0.9 will henceforth

be assumed.

Typically Jrw will be dependent on the state of polarisation being measured,

however, when performing a measurement the state of polarisation is generally not

known in advance. As a result w must be treated as a vector random variable and a

Bayesian approach adopted. The uncertainty of the experimenter can be modelled

by means of a non-informative prior PDF, i.e. by assuming that each state of

polarisation of light is equally likely2. A Bayesian polarisation resolution Ṽw is then

defined analogously to Eq. (5.6) in which the BFIM Jw = Ew[Jrw] is used. The tilde

notation will be used here to represent metrics derived from the BFIM.

In polarimetry however the absolute intensity of the light may be of secondary

or little importance, since the state of polarisation is fully specified by the three

variables {š1, š2, š3}3. The estimation problem thus reduces to inferring a position

in the 3-dimensional Hilbert space spanned by the parameter vector u = (š1, š2, š3)

corresponding to Poincaré space. Unfortunately, this process still necessitates esti-

mation of the total intensity of the beam s0, be it implicit or explicit and thus s0 is

2The assumption of maximal ignorance will be relaxed in the examples of Section 5.3.1.
3The convention of denoting a random variable and the value of a particular realisation by an

upper and lower case letter as introduced in Chapter 2 has again been used.
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considered to be a nuisance parameter.

Ultimately the requisite estimation of s0 reduces the polarisation accuracy ob-

tainable in Poincaré space, the extent of which can be assessed by partitioning the

FIM in an analogous way to that discussed in Section 3.3.1 viz.

Jrw =

 J11 J12

JT12 J22

 , (5.7)

where J11 is a 3× 3 reduced FIM, J12 is a 3× 1 column vector describing the cross-

correlations between estimates of u and s0, and J22 is a scalar, whose reciprocal

describes the accuracy achievable for any estimate of s0 via the CRLB. For any

single state of polarisation Vw/Vu = (3π/8)
√
c/|J22| as follows from Eq. (3.32).

The BFIM relevant to estimation of u is then given by

Ju = Eu|s0 [Jru] = Eu|s0
[
J11 − JT12 J

−1
22 J12

]
, (5.8)

where Eu|s0 [. . .] denotes averaging with respect to u for a given s0. The cross-

correlations between estimates of u and s0 are the cause of the reduction in the

polarisation resolution. The reduced Bayesian polarisation resolution in Poincaré

space is thus given by

Ṽu =
4π

3

√
c3

|Ju|
. (5.9)

By partitioning Jrw in different ways the treatment can be extended to situations

in which not all polarisation parameters are desired (see Section 3.3.1). Considera-

tion of the reduced BFIM Ju is insightful since it separates the dependence of the

noise on the input intensity and the input state of polarisation.

5.2.1 Polarisation encoding and degrees of freedom

Multiplexing of an optical signal, whereby information is encoded using different

degrees of freedom of light, provides a means to increase information storage and

transmission rates. For example different wavelengths can be used to send multi-

ple signals along optical fibres [140] in so-called wavelength-division multiplexing
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(WDM). Fundamentally for WDM the number of different wavelengths, (or more

generally the number of channels or degrees of freedom) depends on the bandwidth

of the channel and the extent of interchannel interference (crosstalk) that can be

tolerated. For example, in fibre optic telecommunication networks which operate in

the 1480 nm to 1600 nm low loss window of silica glass, the international recom-

mendation is for a wavelength spacing of 0.8 nm ranging from 1537 nm to 1563 nm,

so as to give 32 channels with acceptable levels of crosstalk [119].

Degrees of freedom of information channels were perhaps first considered in the

analysis of telegraph signals by Nyquist [208, 209], Küpfmüller [150] and Hartley

[102]. Their respective formulations essentially characterised a signal with an (ap-

proximately) finite bandwidth and temporal extent using the product of the band-

width and the duration to quantify the number of degrees of freedom. This was put

on a more formal basis by Gabor using Fourier analysis in which the domain of the

signal in the frequency-time plane was partitioned into “information cells” of unit

area [81]. Similar ideas were later employed in an imaging context in which case

the space-bandwidth product was defined and used (see Section B.1.1 for further

details) [64, 166, 172, 259]. Other definitions also employ the norm of the associated

system operator [79, 190, 204, 222].

Polarisation encoding is also possible, however is almost exclusively considered

in the context of only two orthogonal states of polarisation [42, 60, 90, 146]. Such

analysis is perhaps natural in the sense that crosstalk between the two degrees of

freedom is zero in the ideal case, however it automatically forsakes the possibilities

afforded by encoding over the entirety of Poincaré space (or Stokes space if ampli-

tude modulation is also employed). Given the ability of polarimeters to distinguish

multiple states of polarisation it is hence logical to investigate the number of degrees

of freedom within polarisation based systems, as will be determined by the size of

the polarisation domain and the polarisation resolution of the PSA. In this vein

the number of distinguishable states is defined here to be the ratio of the volume

of uncertainty in polarisation space before a measurement to the volume of uncer-

tainty after a measurement (and hence can equally be called a metric of fractional
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accuracy). Explicitly the number of degrees of freedom is defined as

ÑS = Ãw =
VS

Ṽw

, (5.10)

and

ÑP = Ãu =
VP

Ṽu

, (5.11)

when considering encoding in Stokes and (reduced) Poincaré space respectively.

An intuitive analog to this definition can be found in optical imaging whereby the

uncertainty in an object’s position before a measurement is merely the field of view

of the imaging system, whilst afterwards, assuming a diffraction limited system with

circular aperture, is the area of the Airy disc. Similarly, the uncertainty before a

polarimetric measurement is the entirety of the associated Hilbert space. The volume

is thus easily calculable using the Lebesgue measure and is given by VS = 4π
3
D for

Stokes space, where D is the dynamic range of the photodetectors and VP = 4π
3

for

Poincaré space i.e. if Nu = 3. If one or more of the polarisation parameters are

known a priori only the volume of space spanned by the unknown parameters need

be considered.

Finally, a local accuracy can also be defined analogously to Eqs. (5.10) and (5.11)

if the FIM before Bayesian averaging, i.e. Jrw or Jru is used to define the volume of

the ellipsoid of concentration for a given incident polarisation state. The accuracy

of a PSA is a useful concept when considering a novel optical data storage solution,

for example, in which information is encoded into the polarisation state of light

scattered from data pits orientated at different angles [281], since it dictates the

storage capacity increase possible.

5.2.2 Efficiency of observation

When performing experiments in conditions with limited light levels, for example in

single molecule studies [73], it is important to utilise the detected photons as effi-

ciently as possible. In the context of polarimetric experiments this implies achieving

the greatest accuracy, or polarisation resolution, per photon. Physical limits how-
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ever exist as to the extent to which this can be achieved. To establish these limits

note that the reciprocal of the accuracy of a PSA can be considered as the fractional

volume of uncertainty in polarisation space, or the probability of measuring a state

of polarisation lying within the same volume, if all polarisation states were equally

likely. One can thus (following Shannon [247]) associate an information gain from a

polarimetric observation as the logarithm of the accuracy i.e.

Ĩ = − log2

(
Ṽu

VP

)
= log2 Ã. (5.12)

The relationship between physical entropy in the thermodynamical sense and infor-

mation has been known for many years and was first recognised by Szilard [270] and

later applied by Brillioun [22, 23, 24, 25]. The relationship states that information

I about a system can only be obtained if there is an increase in entropy ∆H such

that

Ĩ ≤ ∆H

kB ln 2
(5.13)

where kB = 1.381 × 10−23 m2kg s−1K−1 is Boltzmann’s constant. Equality is only

achieved for a reversible observation. From inequality (5.13) it is thus possible to

define the efficiency of observation, η, (0 ≤ η ≤ 1)

η =
ĨkB ln 2

∆H
. (5.14)

Consider then a single optical detector which makes an observation by absorption

of ni0 photons with mean energy hν0
4. The total energy absorbed will eventually

be dissipated as heat corresponding to an increase in the entropy of the detector.

The second law of thermodynamics then dictates that ∆Hi = ni0hν0/Θ, where Θ

is the thermal noise temperature, i.e. ambient temperature, of the detector. There

will however be an entropy cost for each measurement made such that total entropy

4Entropy is an average property of a system and hence it is sufficient to consider the average
number of photons absorbed, ni0, as opposed to a particular realisation of the observation process
in which ni photons are absorbed.
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cost is given by

∆H =

ND−1∑
i=0

∆Hi + ∆Ha, (5.15)

where ∆Ha represents the entropy cost associated with photons that are not ab-

sorbed in the detectors. Ultimately these “lost” photons will also be absorbed

by some material body at temperature Θ0 and again dissipated as heat such that

∆Ha = (1 − tr[V])s0/Θ0 for simultaneous measurements or alternatively ∆Ha =

(ND − tr[V])s0/Θ0 for sequential observations. If all photons are absorbed by pho-

todetectors (i.e. the PSA is 100% light efficient), the efficiency of observation is

given by

η =
kBΘ ln 2

n0hν0

log2

(
VP

Ṽu

)
, (5.16)

where s0 =
∑

i ni0hν0 = n0hν0.

5.2.3 Examples

Accuracy, information and efficiency of observation have all been shown to be de-

pendent on the FIM (which is averaged under the assumption of maximal ignorance

to form the BFIM) and as such all that remains to quantify system performance

in polarisation measurements is to calculate Jrw and Jw. This however requires

making some assertions as to the type of noise present in the system and of the

PSA configuration. In the following numerical calculations the reduced FIM (and

BFIM) associated with estimation of u will only be considered so as to elucidate the

polarisation dependent performance characteristics of different PSAs.

5.2.3.1 Noise models and Fisher information

In what follows the two noise regimes discussed in Chapter 2 will be considered;

namely Poisson and Gaussian statistics. The first example discussed considers the

quantisation of classical light, which produces Poisson distributed noise on the de-

tector with variance ni0, where ni0 = E[ni] is the mean number of photons absorbed

by the ith detector. The second example meanwhile assumes that the mean intensity

is large enough so as to invoke the Central Limit Theorem, however considers the
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improvement that can be achieved when using non-classical, squeezed light. Under

these circumstances squeezed light produces Gaussian noise statistics with variance

s2n0 where s2 < 1 is the squeezing factor [240]. The number of absorbed photons

on a single detector is thus parameterised by the PDFs

f sht
Ni

(ni|ni0) =
(ni0 + nib)

ni

ni!
exp[−(ni0 + nib)] , (5.17)

f sqz
Ni

(ni|ni0) =
1√

2π(s2ni0 + nib)
exp

[
−(ni − ni0 − nib)2

2(s2ni0 + nib)

]
, (5.18)

respectively5. Di = nihν0 is then the detected intensity on the ith detector6. The

additional mean term nib has been introduced in Eq. (5.17) (Eq. (5.18)) to account

for other potential additive sources of stray photons, assumed to be independent and

Poisson (Gaussian) distributed, such that the joint PDF is also Poisson (Gaussian)

distributed (see discussion in Section 2.3.1). A good discussion of such possible noise

sources is given in [14], however two simple examples would be a detector dark count

or a passive background. Although not necessary, the simplifying assumption that

these additional noise sources affect each detector equally such that nib = nb is also

made. Furthermore, it is reasonable to assume that the noise present on each of the

ND measurements is independent and hence the joint PDF required for calculation

of the FIM is given by fN(n|n0) =
∏ND

i=1 fNi(ni|ni0).

Using Eqs. (3.28), (5.17) and (5.18) the FIMs for polarisation measurements are

given by

Jrw = GTJrDG , (5.19)

where

JrD =
1

h2ν2
0

diag

[
1

ni0 + nb

]
, (5.20)

5It is assumed that the average number of photons is large enough that the probability of
negative ni is negligible in accordance with physical reality.

6Throughout this work the quantum efficiency is assumed to be unity for simplicity.
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assuming classical shot noise and

JrD =
1

h2ν2
0

diag

[
1

s2ni0 + nb

]
(5.21)

for Gaussian noise, whilst

G =
∂D

∂w
= VT

∂S

∂w
(5.22)

and ∂S/∂w = diag[s0, s0, s0, 1]. It is immediately apparent from Eqs. (5.20) and

(5.21) that use of squeezed light gives an improvement in performance over classi-

cal light. Although the potential performance gains from squeezed light have been

previously reported in the context of imaging, e.g. [50, 240, 241, 286], this result

has not previously been shown for polarimetric studies. It is interesting to note

that JD ∝ 1/ν2
0 . The increase in Fisher information (and associated increase in

system accuracy) with lower frequencies arises since this corresponds to more col-

lected photons for a given intensity which, as discussed in [11], corresponds to more

independent samples of the stochastic variables. The BFIMs are then found by

performing the Bayesian averaging of Eqs. (5.20) and (5.21).

5.2.3.2 Polarimeter architectures

For definiteness these results are illustrated using three DOAPs existing in the lit-

erature. The first of these, as proposed by Azzam [6] and shown schematically in

Figure 5.2(a), can be easily implemented using only beam splitters, polarisers and

waveplates. The detectors in turn project the incident Stokes vector on to hori-

zontal, vertical, linear 45◦ and right circular polarised states, and hence has the

instrument matrix

T1 =
1

2


1 1 0 0

1 −1 0 0

1 0 1 0

1 0 0 1

 . (5.23)

Any noise in the intensity measurements is amplified during data processing to

extract, for example, the Stokes parameters, the extent of which is often measured
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Figure 5.2: (left) Schematics of three alternative DOAP designs (see text). Notation is as
follows: BS - beam splitter, WP - Wollaston prism, QWP - quarter wave plate, GT - Glan
Thompson polariser, BBP - broadband prism and D - detector. (right) Poincaré diagrams
showing the polarisation state dependence of accuracy, before Bayesian averaging for each
DOAP configuration. Simulation parameters used were n0 = 104, nb = 0, λ0 = c/ν0 =
405 nm and c = 0.9. White markers denote the state of polarisation at different points on
the Poincaré sphere and are shown for reference.
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using the condition number of the associated matrices, (T for a Stokes polarime-

ter), defined as κT = ‖T‖F‖T−1‖F where ‖ . . . ‖F denotes the Frobenius norm7.

Compain and Drevillon [40] proposed an alternative PSA construction as shown in

Figure 5.2(b) in which the prism geometry and the angle of incidence of light onto

the first surface are optimised to minimise the condition number of the instrument

matrix to a value of 4.48. The associated instrument matrix is

T2 =
1

2


1 −0.575 0.818 0

1 −0.575 −0.818 0

1 0.617 −0.003 0.787

1 0.617 0.003 −0.787

 . (5.24)

Note that the deviations of V from the ideal case arising from Fresnel reflection

and transmission at the prism entrance surface will be ignored so that the results

calculated will be comparable to the alternative DOAPs considered here. The im-

balance between reflected and transmitted beams only equates to ≈ 5% however

and discrepancies from reality will thus be small. Instrument matrices with smaller

condition numbers than 4.48 are possible [243], however experimental realisation of

these is complicated since it requires, in general, eight Babinent Soleil compensators.

Finally a DOAP configuration employing a basis of six distinct measurement

states, as given by the instrument matrix

T3 =
1

2



1 1 0 0

1 −1 0 0

1 0 1 0

1 0 −1 0

1 0 0 1

1 0 0 −1


(5.25)

was recently proposed by Lara and Paterson [154] and is schematically shown in

Figure 5.2(c). This DOAP architecture was shown to possess polarisation indepen-

dent noise characteristics in the Stokes parameters as inferred from Eq. (5.2), in the

7The condition number is frequently defined using alternative matrix norms, however the Frobe-
nius norm will be used throughout this chapter.
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presence of a combination of Gaussian thermal noise and signal dependent Poisson

noise.

Using Eqs. (5.8), and (5.19)–(5.25), Jru can be calculated and hence so too can the

accuracy before Bayesian averaging Au = Au(u). Due to the similarity of the form

of the FIM for Gaussian and Poisson noise, restriction is now made to Poisson noise

only. Numerical calculations were performed for each DOAP configuration assuming

incident light with wavelength of 405 nm. A total mean photon count of 104 and a

zero background count were further assumed. The resulting state dependent PSA

accuracy is shown in Figures 5.2(d)–(f). Whilst these plots are formed via direct

evaluation of the formulae given in the preceding theory, Monte-Carlo simulations (in

which the accuracy was calculated from the covariance matrix of simulated random

data) are in good agreement.

With reference to Figure 5.2 and Eqs. (5.23)–(5.25) it is worth mentioning that,

for a particular polarimeter architecture, the best accuracy is achieved when measur-

ing totally polarised states that equalise the intensity measured in each polarimeter

arm, a result which also holds for general PSA configurations. Accuracy is how-

ever seen to decrease with the degree of polarisation, i.e. toward the centre of the

Poincaré sphere, a trend which would be expected.

It is also noted that the PSA architecture proposed by Lara and Paterson is

not seen to give a constant accuracy over the surface of the Poincaré sphere, in

apparent contradiction to [154]. This discrepancy however arises due to use of a

different metric. The metric proposed in [154] is equivalent to tr[J−1], or so-called

A-optimality [188], however the metric proposed in this work takes greater account

of the cross-correlations present in parameter estimates. The six arm DOAP does

however still exhibit greater uniformity over the surface of the Poincaré sphere,

resulting from a greater sampling of Poincaré space.

If it were known a priori that some particular polarisation state was more likely

to be measured, additional accuracy gains could be made (as described by the Japw
term of Eq. (3.46)), by appropriate system design (see Section 5.3 for a fuller dis-

cussion).

Figure 5.3 shows the variation of accuracy and efficiency of observation (after

averaging) as a function of the number of absorbed photons for each DOAP. The
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Figure 5.3: Variation of accuracy and efficiency of observation with mean photon count
for different DOAP configurations (see text). Simulation parameters are the same as
Figure 5.2

accuracy is seen to improve as the number of detected photons increases. Infinite

accuracy is thus, in principle, possible in polarimetry if enough photons are detected.

A similar conclusion was reached in terms of localisation accuracy for two point

objects [210, 229]. Additionally the efficiency falls as photon numbers increase.

This essentially arises since there is a redundancy in the information which each

photon in a beam carries with regard to their polarisation due to the correlations

that exist between them.

Whilst a relatively low number of photons were considered when calculating

the data in Figure 5.3 (given the efficiency properties of the MLE described in

Section 3.3.3) hence throwing the validity of the plots into question, it should be

observed that both accuracy and efficiency of observation are monotonic functions of

the mean photon count. Consequently trends inferred from Figure 5.3 are valid for

Poisson noise. Furthermore if Gaussian noise described by Eq. (5.18) was assumed

in numerical calculations, plots of identical functional form would follow. Due to

the exact efficiency of the MLE in Gaussian noise Figure 5.3 is valid even at such
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low photon counts.

Some final reflections must be made in the context of quantum mechanics. Whilst

a quantum analog to Fisher information can be formulated in terms of projection

operators [21, 110, 111] and similar metrics formed, it is currently unclear (at least

to the author) as to the role of the non-commutativity of the Stokes parameters for

example. Work is ongoing to resolve these questions in the hope of generalising the

definition of polarisation resolution to a quantum domain.

5.2.4 Channel capacity and detector numbers

Using Frieden’s definition of channel capacity it is possible to consider the perfor-

mance characteristics of polarimeters as the number of detector arms is varied more

rigorously. Consider first the channel capacity in the context of estimating the mean

intensities only, i.e. tr(JD). For a Stokes polarimeter, and assuming a Poisson noise

regime, Eq. (5.20) gives the Fisher capacity as

CD =

ND∑
i=1

1

ni0h2ν2
0

=

ND∑
i=1

1

hν0Di0

, (5.26)

which under the constraint 0 <
∑ND

i=1 Di0 ≤ s0 is a maximum when the intensity is

equalised across the detectors, such that Di0 = as0/ND, where a ≤ 1 is a positive

constant (although henceforth assumed to be unity). Equalising the intensity on

each detector also equalises the noise which is considered a desirable property in

optimisation of polarimeters [289, 325]. This result will also be justified further in

Section 5.3.1. The channel capacity is thus bounded according to8

CD ≤
N2
D

s0 +NDDb

, (5.27)

where Db = nbhν0 is the mean background intensity reading. Although channel

capacity initially increases quadratically with the number of detectors, it is seen

this slows to a linear increase as the additive noise term Db becomes more dominant

on each detector. If a Gaussian noise model with constant covariance were used,

the channel capacity would increase linearly with ND. Since Fisher information is

8A factor of hν0 shall henceforth be dropped for clarity
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additive [80] the Fisher channel capacity for a Mueller polarimeter can be calculated

by summing the capacities for each input polarisation state. Thus

CD ≤
NRN

2
D

R0 +NDDb

, (5.28)

where R0 is the mean intensity of the probing polarisation states. Achieving this

bound is unlikely though, since equality requires the sample to be perfectly transmit-

ting to all incident polarisation states. Eq. (5.28) shows however that the maximum

channel capacity for a Mueller polarimeter only scales linearly with respect to the

number of probing polarisation states.

Parameter inference problems however introduce derivative factors, of the form

∂D/∂w, into the definition of the FIM. Since these derivative terms scale with the

incident intensity, it can also be shown (assuming equal peak intensity on every

detector, such that Di0 = D0) that Cw = tr[Jw] ∝ D0 ∝ s0/ND.

Practically these results embody the intuitive result that by performing more

measurements i.e. increasing the sampling, greater redundancy is introduced into

the experimental data, hence allowing a better precision in parameter estimates to

be achieved. A larger intensity per measurement is however preferable. Henceforth

it will be assumed that ND = NR = 4 since this is the minimum number of measure-

ments required to determine S or M uniquely in a noise free system. The associated

FIMs are thus 4× 4 and 16× 16 respectively.

5.3 Optimisation of polarimeters

Much effort has been invested into determining optimal configurations of polarime-

ters in terms of their experimental setup e.g. [3, 48, 93, 94, 261, 288, 290, 325],

however invariably little consideration is given to a priori information that an exper-

imenter may have about the system they are studying. Information theory however

states, that if exploited correctly, such information can improve the accuracy of any

measurements [189, 238]. For example if the position of an object is approximately

known, the field of view can be reduced, perhaps by using a confocal microscope,

giving rise to an increase in the bandwidth and hence resolution of the system [42].

To address this omission consideration is now given to how such a priori information
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can be represented and incorporated into system optimisation, as fully detailed in

[71]. In doing so, it is found that common optimisation procedures do not neces-

sarily give the optimal polarimeter configuration. This point is perhaps most easily

illustrated by restricting to a Poisson noise model for the remainder of this chap-

ter. Furthermore, the optimisation framework naturally describes the distribution of

errors amongst inferred polarisation parameters, such as diattenuation, retardance

and depolarisation as may be obtained from a Lu-Chipman Mueller matrix decom-

position [169]. These results could potentially be used for a more accurate noise

analysis in polarimetry.

An experimenter may know from an existing model or earlier data that the

object being studied belongs to a restricted class, that is to say they possess some a

priori information about the parameters being measured. Known restrictions on the

possible values of w can often be conveniently parameterised using a PDF fW(w)

which describes the probability of each value of w occurring.

Optimisation of both Stokes and Mueller polarimeters will be considered in the

presence of such a priori information and will be performed in terms of the full

polarisation resolution, as parameterised by |Jw|, by varying the instrument matrix,

beam splitting ratios and, in the case of Mueller polarimeters, the incident polar-

isation states. In particular, when considering Stokes polarimeters the parameter

vector is set to w = S or alternatively M = vec[M] for Mueller polarimeters, where

vec[· · · ] denotes the vectorisation (or stacking) operation. Optimisation in terms

of the Stokes vector and vectorised Mueller matrix is sufficient since the ∂S/∂w

factor of Eq. (5.22) does not contain any free design parameters in either type of

polarimetry.

Setting w = S or M and using Eqs. (3.28), (5.1) and (5.4) it is possible to

calculate the relevant BFIMs as

JS = TTVTJDVT , (5.29a)

JM =
(
R⊗ VTTT

)
JD

(
RT ⊗ TV

)
, (5.29b)

where JD = E[JrD] + JapD (c.f. Eq. (3.46)), JrD is of the form of Eq. (5.20) and ⊗
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denotes the Kronecker product. Hence,

|JS| = |V|2|T|2|JD| , (5.30a)

|JM| = |R|8|V|8|T|8|JD| . (5.30b)

Closer inspection of Eqs. (5.30) reveals there are two factors which influence

the amount of information received in an optical experiment. The first of these

corresponds to the amount of information acquired during the physical measure-

ment as described by the |JD| term. This component also encompasses any a priori

information that may be possessed. The second, and perhaps the more familiar, in-

fluence is related to any subsequent data processing used to extract the Stokes vector

or Mueller matrix from the measured intensities as per Eqs. (5.2) and (5.5). As

previously mentioned such data processing is often parameterised by the condition

number of the associated matrices however since the condition number of a matrix

is inversely proportional to its determinant (see e.g. [243]) the noise amplification

is equally described by the |V|, |T| (and |R|) factors of Eqs. (5.30).

Frequently the condition number of the instrument matrix (and input polarisa-

tion matrix) is used as a figure of merit for polarimeter optimisation [3, 48, 261, 290].

The discussion above however has highlighted the inadequacy of this strategy, in gen-

eral, since it gives no regard to potential gains that can be made by improving the

precision of the measurement itself or incorporation of a priori knowledge. Use of

the informational figure of merit proposed here is hence more holistic in terms of

measuring the quality of a polarimeter.

5.3.1 Examples

Having introduced a more suitable framework within which both Stokes and Mueller

polarimeters can be optimised a number of examples are now given to highlight some

points of interest. Circumstances under which optimisation in terms of polarisation

resolution is equivalent to use of the condition number are highlighted in the first

example, however further examples then illustrate that when a priori information

is introduced this equivalence does not hold.
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5.3.1.1 Maximal ignorance

The first example continues the assumption made thus far of maximal ignorance of

the likely incident polarisation states. Initially considering a Stokes polarimeter, the

a priori information (or lack thereof) is again modelled by assuming each polari-

sation state is equally likely, however it is assumed that all possible incident states

have the same intensity S0 and degree of polarisation P 9.

Since a uniform prior PDF implies JapD = 0,

|JS| = |V|2|T|2
4∏
i=1

ES

[
1

Di0 +Db

]
, (5.31)

where it can be shown

ES

[
1

Di0 +Db

]
=

1

S0P
log

[
(1 + P )S0 + 2Db

(1− P )S0 + 2Db

]
,

=
2

S0P
arctanh

[
S0P

S0 + 2Db

]
. (5.32)

Hence

|JS| =
1

8
|V|2|T|2

(
arctanh

[
S0P

S0 + 2Db

]/
S0P

)4

. (5.33)

It is thus apparent that to maximise the information obtained we must maximise

|V| and |T| or equivalently make the associated condition number as small as pos-

sible. Considering the implications of minimisation of the condition number of V

first (or alternatively maximising its determinant), it is noted that the determinant

of a matrix with a fixed trace is maximised when it is diagonal with equal elements

[227]. Consequently it can be concluded that DOAPs perform optimally when the

intensity in each detector is equal. Sequential measurements automatically satisfy

this condition since in the ideal case V = I. Improved performance from intensity

equalisation has already been seen in Figure 5.2 when considering the accuracy of

the different PSA configurations, hence further supporting the conclusions made

and also justifying the assumptions made in Section 5.2.4. Van der Sluis detailed an

9PDFs in which P can vary can theoretically be used, however care must be taken since depo-
larisation can be introduced by the measurement instrumentation [201].
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equalising theorem to reduce the condition number of a matrix [294], which has since

been applied in the context of realistic, experimental polarimeter instrument matri-

ces [173]. This equalising theorem exactly acts so as to achieve an equal intensity

in each detector.

Minimising the condition number of the instrument matrix can be shown geo-

metrically to correspond to maximising the volume of the tetrahedron whose vertices

on the Poincaré sphere are defined by Ti, i.e. making the tetrahedron regular [243].

Although the same conclusion has been previously reached via considerations of

the structure of the instrument matrix and noise propagation [8, 243, 289, 290] the

derivation presented here based on information theory appears to be new. Since

a maximum determinant corresponds to minimal noise amplification the signal to

noise ratio (SNR), given by

SNR =

(
S0

2P
arctanh

[
S0P

S0 + 2Db

])1/2

, (5.34)

is also maximum. If Db � S0 this reduces to the familiar S
1/2
0 scaling associated

with Poisson noise [50].

There are an infinite number of possible instrument matrices corresponding to

the rotation of the tetrahedron within the Poincaré sphere about the origin, however

given one optimal instrument matrix (as can easily be found numerically), e.g. [243]

Topt =


1 1 0 0

1 −0.333 −0.816 0.471

1 −0.333 0 −0.943

1 −0.333 0.816 0.471

 , (5.35)

it is possible to find alternative configurations by applying a suitable rotation matrix.

For a Mueller matrix polarimeter

|JM| = |R|8|V|8|T|8
16∏
i=1

EM

[
1

Di0 +Db

]
, (5.36)

whereby the same results apply, however the determinant of R must also be max-

imised, that is to say the incident polarisation states must be made as orthogonal
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as possible for optimal performance. For the case of maximal ignorance there is no

relationship between T and R.

To conclude this example the Fisher channel capacity is again considered. From

Eq. (5.32) it can be shown that

CD ∝
1

S0P
arctanh

[
S0P

S0 + 2Db

]
. (5.37)

For light with a low degree of polarisation, whereby P � 1, the channel capacity

approximately obeys

CD ∝
1

S0 + 2Db

+
1

3

S2
0

(S0 + 2Db)3
P 2 , (5.38)

whilst for highly polarised light

CD ∝
1

S0

arctanh

[
S0P

S0 + 2Db

]
. (5.39)

Channel capacity thus increases with the degree of polarisation of light, as would be

expected (see Figure 5.4).
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Figure 5.4: Dependence of channel capacity on degree of polarisation for S0/Db = 104

(blue). Limiting cases for P � 1 (green) and P ≈ 1 (red) are also shown.
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5.3.1.2 Matched filter

Adopting the opposite extreme to maximal ignorance, consider now the polarimetric

equivalent to the matched filter. Matched filters frequently arise in signal processing,

for example in radar detection, in which a known signal (or template) is correlated

with a measured one so as to determine the presence or absence of the known signal

against some background. Furthermore the magnitude of the correlation can also be

used to infer parameters of interest, such as the distance to objects. In this paradigm

matched filters are designed so as to maximise the SNR when the template is present

[311]. A similar approach is adopted here, however discussion is restricted to a Stokes

polarimeter in which depolarised light constitutes the background signal, whilst the

magnitude of a known state of polarisation is to be estimated.

Denoting the known polarisation state by its Stokes vector St = (St0, St1, St2, St3)

the a priori knowledge can be represented by the PDF f(s) = δ(s−St) where δ(x) is

the multi-dimensional Dirac delta function. Since s is non-random JapD is identically

zero. Consequently (JD)ij = δij/(Di0 +Db) whereby

|JS| = |V|2|T|2
4∏
i=1

1

Di0 +Db

. (5.40)

If the additive noise term Db is zero infinite information can be obtained if Di0 = 0

on a single detector, corresponding to one arm of the polarimeter projecting the

incident polarisation on to the basis state Ti ∝ (St0,−St1,−St2,−St3). Note the

parallel with conventional matched filters, for which the filter corresponds to the

template reversed in time. This result can be understood by noting that for a given

state of polarisation there are only two PSA configurations capable of uniquely

identifying that state, namely Ti ∝ (St0,±St1,±St2,±St3) corresponding to dia-

metrically opposite points on the Poincaré sphere. For example only a horizontal or

vertical polariser can unambiguously identify horizontally polarised light (giving a

maximum or null intensity respectively). When taking a single measurement, it is

not in general possible to know which intensity level corresponds to the maximum,

whilst a null intensity is more clearly identifiable. Furthermore, an underlying Pois-

son process has been assumed in which noise variations grow as the intensity grows

and hence lower intensities give a better accuracy.
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If present, a depolarised background necessitates a second, distinct polarimeter

arm and also results in finite information. The situation is similar for non-zero

Db. Additional polarimeter arms improve estimation precision as discussed earlier

in Section 5.2.4. Although unnecessary, the assertion that ND = 4 is maintained to

allow easy comparison. Once more it is found that there are an infinite number of

possible instrument matrices that give rise to a maximum in the information, since

it is possible to trade off precision in the intensity measurements (corresponding

to higher light levels) with a reduction in the noise amplification associated with

data processing i.e. smaller condition number. Three possible polarimeter configu-

rations are shown in Figure 5.5(a) for a template Stokes vector of (1, 0, 0, 1). The

first configuration (shown in green) gives the best condition number possible for a

matched polarimeter (and consequently worse measurement accuracy), whilst the

second (red) shows the opposite case, whereby the volume of the inscribed tetra-

hedron is significantly smaller i.e. larger condition number, yet the precision of

measurement is increased since the total detected intensity is smaller. Practically,

this arrangement is unsuitable since it is highly sensitive to alignment errors in the

PSA. The third configuration (blue) illustrates a more general arrangement.

(b)(a)

Figure 5.5: Poincaré sphere showing possible polarimeter configurations (a) for a Stokes
polarimeter matched to the template Stokes vector (1, 0, 0, 1) i.e. right circularly polarised
light and (b) a linear polarimeter, assuming the ratio S0/Db = 105. Each arrow denotes
the basis Stokes vector of a polarimeter arm.
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5.3.1.3 Linear polarimeter

The final example assumes the polarisation incident into a Stokes polarimeter is

restricted to lie on the equator of the Poincaré sphere. This could for example

correspond to studying the light from a family of polarisers. Such a model could be

useful in polarisation multiplexed optical data storage [201, 281] (see Chapter 7).

Using the PDF f(ε, ϑ) = δ(ε)/π, where ε and ϑ are angles which define the position

on the Poincaré sphere, the expectations can be evaluated analytically to give

E

[
1

Di0 +Db

]
=

1√
(S0 + 2Db)2 + S2

0P
2 cos2 2αi

, (5.41)

where αi is the equatorial angle on the Poincaré sphere for the ith basis Stokes

vector of the instrument matrix. Considering it is known a priori that the incident

polarisation state is linearly polarised there is no need to estimate S3 since this

only describes the ellipticity of the light and it can hence be treated as a nuisance

parameter. A linear Stokes polarimeter is thus optimised when

|Ju| = |V|2|T|2
∏4

i=1 [(S0 + 2Db)
2 + S2

0P
2 cos2 2αi]

−1/2∑4
i=1 sin2(2αi) [(S0 + 2Db)2 + S2

0P
2 cos2 2αi]

−1/2
, (5.42)

is maximum, where u denotes the parameter vector (S0, S1, S2). In agreement with

[288] the maximum of this metric occurs when the measurement basis Stokes vectors

Ti are equally spaced around the equator of the Poincaré sphere as shown in Figure

5.5(b). When applied to Mueller polarimeters a similar analysis shows the optimal

input polarisation states should also be equally spaced about the equator of the

Poincaré sphere, although their position need bear no resemblance to those defined

by Ti.

5.3.2 Extension of optimisation results

The above results with regards to the optimisation of polarimeters hold not only

for inference of the Stokes parameters or elements of a Mueller matrix, but can

be further extended for inference of further polarisation parameters z derived from

these quantities. Such a situation may arise, for example when performing a Lu-
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Chipman polar decomposition [169] on a measured Mueller matrix as is heavily used

in the literature [33, 69, 156]. Eqs. (5.29) generalise to

Jz =
∂S

∂z

T

TTVTJDVT
∂S

∂z
, (5.43a)

Jz =
∂M
∂z

T (
R⊗ VTTT

)
JD

(
RT ⊗ TV

) ∂M
∂z

. (5.43b)

Accordingly, the volume of the ellipsoid of concentration as found from |Jz| is mod-

ified by a factor of |∂w/∂z|2 (w = S or M), which is independent of V, T and R.

Its significance in terms of optimisation with respect to the experimental setup is

thus null, hence optimisation of these more complicated inference problems reduces

to the optimisation procedure previously discussed.

5.4 Noise propagation in Lu-Chipman decompo-

sition

5.4.1 Single element systems

Noise propagation in inference problems, that is to say how noise in experimental

data manifests itself as errors in the parameters of interest, can also be considered

by employing Eqs. (5.43). Although the mathematics is generally complicated, a

result pertaining to polar decomposition of Mueller matrices [169] is explicitly given

here. Before considering the composite systems for which polar decomposition is

relevant a description of noise propagation for single polarisation element systems,

namely pure diattenuators, retarders and depolarisers, must first be given.

A diattenuator is a non-depolarising optical element which preferentially trans-

mits particular states of polarisation and has a Mueller matrix of the form [169]

MA = Tu

 1 AT

A mA

 , (5.44)

where Tu is the transmittance for unpolarised light, A = (A1, A2, A3) is the diatten-
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uation vector whose magnitude A is known as the diattenuation and

mA =
√

1− A2 I + (1−
√

1− A2)
AAT

A2
. (5.45)

Any decomposition algorithm will need to estimate all four unknown parameters z =

(A1, A2, A3, Tu). Lengthy calculations give the derivatives required for evaluation of

Eq. (5.43b) as

∂MA

∂Ak
= Tu

 0 δTk

δk
∂mA
∂Ak

 ,
∂MA

∂Tu
=

MA

Tu
, (5.46)

where k = 1, 2 or 3, δk = (δ1k, δ2k, δ3k)
T and

∂mAij

∂Ak
=

[
Aiδjk
A2

+
Ajδik
A2

] [
1−
√

1− A2
]

+
Akδij√
1− A2

− AiAjAk
A4

[
2 +

A2 − 2√
1− A2

]
,

(5.47)

where mAij is the (i, j)th element of mA. Using the FIM, JA, as calculated from

Eqs. (5.43)–(5.47), and the CRLB the best obtainable precision for estimation of

the diattenuation parameters can be calculated. The error on each parameter will

in general be different, a point considered further in [203, 244].

Similarly consider a pure retarder which has a Mueller matrix of the general form

MR =

 1 0T

0 mR

 , (5.48)

where

mRij = δij cosR +
RiRj

R2
(1− cosR) +

3∑
q=1

εijq
Rq

R
sinR . (5.49)

Again (R1, R2, R3) defines a retardance axis and has a norm of R, known as the

retardance and εijq is the Levi-Civita permutation symbol. Calculation of the FIM,
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JR, requires the derivatives

∂mRij

∂Rk

=

[
Riδjk
R2

+
Rjδik
R2

]
(1− cosR)− Rkδij

R
sinR− RiRjRk

R2

[
1− cosR

R
+ sinR

]
+

3∑
q=1

εijq
R2

[
RqRk cosR +

(
Rδqk −

Rk

R

)
sinR

]
. (5.50)

The case of a depolariser is however much more difficult to tackle since in gen-

eral an eigen-analysis of the system is required to find the pertinent depolarisation

parameters. This can not be described analytically except in some special cases.

For example, if it were known a priori that the sample were a pure depolariser with

Mueller matrix of the form

M∆ =


1 0 0 0

0 a 0 0

0 0 b 0

0 0 0 c

 , |a|, |b|, |c| ≤ 1, (5.51)

where 1−|a|, 1−|b| and 1−|c| are the principal depolarisation factors, the derivatives

∂M∆ ij

∂a
= δi2δj2,

∂M∆ ij

∂b
= δi3δj3,

∂M∆ ij

∂c
= δi4δj4, (5.52)

can be easily calculated where M∆ ij is the (i, j)th element of M∆. The appropriate

FIM J∆ is then given by substituting Eqs. (5.52) into Eq. (5.43b).

5.4.2 Composite systems

The single element results discussed above can be used for noise analysis when the

experimenter has a priori knowledge about the structure of the Mueller matrix. If

however this is not the case a Lu-Chipman decomposition is frequently performed so

as to parameterise the sample. Fundamental to the Lu-Chipman decomposition is

the fact that an arbitrary Mueller matrix can be written as the product of three dis-

tinct Mueller matrices corresponding to a depolariser, retarder and diattenuator i.e.

M = M∆MRMA. Morio and Goudail [196] considered the importance of altering

the order in which the product is evaluated and found that different decomposi-
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tions gave either unphysical results or merely comprised of an appropriate rotation

compared to the Lu-Chipman decomposition and thus is only a mathematical, not

physical, difference. With these results in mind the original formulation is adhered

to, since this ensures physicality and furthermore corresponds to common usage.

Alternative Mueller matrix decompositions are also starting to emerge in the field

[41, 215, 242], however these will not be considered here since they have, as yet, not

seen widespread use.

Calculation of the FIM for a Lu-Chipman decomposition can be achieved by

application of the product rule to Eq. (5.43b) which yields

Jz =
∂MT

A

∂z

(
R⊗MT

RMT
∆TTVT

)
JD

(
RT ⊗ VTM∆MR

) ∂MA

∂z

+
∂MT

R

∂z

(
MAR⊗MT

∆TTVT
)

JD

(
RTMT

A ⊗ VTM∆

) ∂MR

∂z
(5.53)

+
∂MT

∆

∂z

(
MRMAR⊗ TTVT

)
JD

(
RTMT

AMT
R ⊗ VT

) ∂M∆

∂z
,

since the structure of the matrices dictates that the cross terms are identically zero.

It is important to note that the parameters of interest have been stacked into a

single parameter vector for example z = (R1, R2, . . . , b, c). Jz is then block diagonal

Jz =


JR O O

O JA O

O O J∆

 , (5.54)

where the order of the diagonal terms depends only on the ordering of the parameters

in z. Mathematically, the FIMs JR, JA and J∆ are of the same form as the single

element FIMs described in the previous section albeit for a slight modification in

the effective input polarisation states and instrument matrix respectively, as can

be seen by comparing Eqs. (5.43b) and (5.53). Fortunately this makes physical

sense considering the Mueller matrix polar decomposition models the system as a

cascade of three independent polarisation elements. Once more, it is important to

give the cautionary note that the derivatives required to calculate J∆ can not be

found analytically in general.
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5.5 Conclusions

The work undertaken in this chapter set out to consider the informational limits

in both Stokes and Mueller polarimetry. In this vein, and in analogy to definitions

in other fields of research, a polarisation resolution was defined by employing the

concepts of Fisher information introduced in Chapter 3. Both local and Bayesian

definitions were given, where the latter considers the potential random nature of the

measurement and experimental process. Further figures of merit were derived from

the given definition of polarisation resolution. In particular, the number of degrees of

freedom and the efficiency of observation were defined, which may be more pertinent

measures in polarisation multiplexed systems, or low light experiments respectively.

By consideration of a number of existing polarimeter architectures it was also

demonstrated that infinite accuracy in polarisation space is possible, provided enough

photons are detected, with squeezed light achieving this more efficiently than clas-

sical light. The results given can be regarded as fundamental limits, since the noise

models considered arise from the nature of light itself and not from external sources.

It should however be noted that the results given in this chapter can only be con-

sidered to hold in a statistical sense. It is entirely feasible that better performance

is achievable in a single instance, however if this is the case then it is merely a case

of good fortune.

In the second half of this chapter the proposed definition of polarisation resolu-

tion was used to determine the optimal polarimeter configuration initially under the

assumption that no knowledge was possessed as to the likely states of polarisation

(or the Mueller matrix being measured). In so doing, it was found that polarisation

resolution gives a holistic approach to optimisation, by automatically incorporating

noise amplification, raw limits in the photodectection and signal equalisation among

multiple measurements.

Additionally, the question as to how a priori information that may be possessed

about a system under study can be used to improve the precision of measurements

was addressed. Under these circumstances it was found that frequently used opti-

misation routines, in which the condition number of the instrument (and incident

polarisation) matrix is maximised, are unsatisfactory and do not give optimal results.
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This was illustrated by considering the polarimetric equivalent of a matched filter

and linear polarimeters. Specifically it was found that, under conditions in which

the variance of the noise increases with incident intensity (such as Poisson noise or

some types of Gaussian noise) optimal polarimeters are such that the measured in-

tensity is jointly equalised among each detector. Fully polarised states of light were

also seen to be measurable with greater resolution than partially polarised states.

Although formulated within rather specific noise and estimation problems, optimi-

sation with respect to Fisher information is easily extended to different regimes and

is thus applicable to a wide variety of optical experiments, even outside the domain

of polarimetry.

Inference problems in polarimetry present further cause for consideration, since

noise propagation will not be balanced among each inferred parameter. This fact

was highlighted by extending the definition of polarisation resolution to calculation

of the FIM pertaining to a Lu-Chipman polar decomposition of a Mueller matrix,

due to its widespread use in polarimetric analysis.
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Chapter 6

Information in polarisation

imaging

Observations always involve theory.

Edwin Hubble

6.1 Introduction

Information in both the natural and man-made world is frequently not spatially

confined to a single point. Whilst, for example, studying the autofluorescence from a

single molecule in a cell provides information with regards to that molecule, nothing

is learnt about the processes and structure in the whole cell. To do so requires

information to be collected from multiple locations. Such is the reason for the

prevalence and success of imaging systems. In an optical context, a CCD can be

used to record the intensity incident upon each pixel for instance. If located in the

image plane of an optical microscope or telescope, information with regards to the

object can then be extracted from the intensity readings.

Incorporating polarisation sensitive elements into existing optical imaging sys-

tems however affords the possibilities of polarisation imaging, in which either the
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polarisation state of the incident light is mapped (Stokes imaging) or the polari-

sation properties of the object are considered (Mueller imaging). For example the

Pol-Scope developed by Oldenbourg et. al [212, 213, 214] is capable of measuring

optical anisotropies in a sample, such as birefringence and diattenuation as may be

of interest in molecular and crystallographic studies.

Great efforts are often spent on obtaining high quality images, which possess a

high fidelity with the original object, so that a human observer can immediately

interpret the image as desired, e.g. in medical diagnosis a clinician may look for

cancerous regions of tissue. Such efforts often concentrate on improving the spatial

resolution of the imaging system beyond the diffraction limit, often referred to as

superresolution, so as to maximise the spatial information available. Tailoring the

illumination field in the object plane is a popular technique used to this end, al-

though numerical optimisation is normally used to determine the appropriate mask

or field distribution to use. In Section 6.2 however a new analytic method, developed

in part by the author, based upon an eigenfunction expansion of the Debye-Wolf

diffraction integral is presented. In principle this method allows an arbitrary ban-

dlimited field distribution to be specified in the focal region of a high numerical

aperture lens and the appropriate pupil plane distribution to be calculated. Various

additional considerations do however constrain the inversion to ensure physicality

and practicality of the results including field specification, energy concentration and

noise amplification. These topics are discussed fully in Section 6.3.1. Synthesis of

arbitrary field distributions is of importance in a number of further applications

including lithography, optical data storage, and atomic manipulation. Section 6.3.2

therefore considers a variety of examples, beyond that of superresolution, in which

the inversion formalism is utilised.

High image fidelity in high NA imaging systems in general requires the component-

wise point spread function to approximate a Dirac delta function. Even in the simple

scenario of imaging a dipole this condition is however not fulfilled, due to the mixing

of field components upon focusing (see Section 4.5). Information theory fortunately

provides an alternative strategy for assessing images, whereby the final image is

treated as a message from which information about the object can be extracted

[64]. The latter half of this chapter (Section 6.4) is therefore dedicated to the use of
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6.2 Eigenfunction expansion of the Debye-Wolf diffraction integral

the Fisher information concepts developed thus far, to characterise the performance

of imaging systems. Although initially, the increased informational capabilities of

imaging systems will be formally proven, particular attention will be given to the

imaging properties of a simple polarisation microscope imaging dipole sources. This

example is adopted primarily for two reasons; firstly, dipole sources constitute the

elementary object from which more complex optical systems can be modelled [292];

whilst secondly, polarisation microscopes play a key role in the readout of the po-

larisation multiplexed optical data storage system presented in Chapter 7. Insight

can thus be gained into these systems.

Finally the chapter closes with Section 6.5, in which potential accuracy gains

achievable when incorporating a priori information into image processing routines, is

briefly investigated. As contrasted to the probabilistic a priori knowledge considered

in Chapter 5, physical constraints, as dictated by Maxwell’s equations, are employed.

Significant improvements will be seen to be possible.

6.2 Eigenfunction expansion of the Debye-Wolf

diffraction integral

As discussed in Section 4.5 the Debye-Wolf diffraction integral is routinely used to

describe the focusing of light in high numerical aperture systems. With a view to

simplifying the Debye-Wolf integral the formulae of Watson [303], Gradshteyn and

Ryzhik [95] and Agrawal and Pattanayak [2], were used by Török et al. to express

both the in-focus and defocus terms by means of a series of analytic functions [282].

Kant also reported a series expansion of the diffraction integrals using Gegenbauer

polynomials [135] and Sherif and Török [254] further reported an eigenfunction rep-

resentation of the so-called I integrals of Richards and Wolf [234, 317]. In reality

however these expansions do not reveal anything about the physical nature of the

problem, but instead merely provide a simplified means to calculate the diffraction

integrals when computational time is deemed to be of significance.

Braat et al. obtained the field components in the focal region as a series us-

ing Nijboer-Zernike functions [19], whilst Sheppard and Török obtained the field

components as a multipole expansion [250]. These two expansions are more physi-

161



Chapter 6: Information in polarisation imaging

cal than those listed above because the Nijboer-Zernike expansion aims at obtaining

formulae where the incident and focused fields are represented in terms of aberration

functions. This representation has immediate significance in the study of realistic

focusing systems with aberrations present. Nevertheless, the multipole expansion

may be regarded as the most physical representation because the focused field is

represented in terms of physically realisable multipoles.

In this section, a new expansion of the electric field components in the focal

region of a high NA lens, developed by the author in collaboration with S. S. Sherif

[252], is presented. This expansion is in terms of Bessel functions and the generalised

prolate spheroidal functions which are eigenfunctions of the two-dimensional finite

Hankel transform. Whilst Bessel functions are likely to be familiar to the reader, the

generalised prolate spheroidal functions are less commonly encountered and hence

an introduction is given in Appendix B. As is discussed in Section 6.2.2, the pre-

sented eigenfunction expansion has many optimal, desirable and physical properties,

including maximum energy packing properties, bandlimited basis functions, separa-

bility in cylindrical coordinates, and fast convergence in the azimuthal, radial and

axial directions. Physically the dominant modes are furthermore closely related to

the resolution of the optical system. Consequently, it will be seen that the eigen-

function expansion provides a simple and natural way to carry out both forward and

inverse analysis of high NA focusing systems. In contrast to earlier work [254] which

allowed only for 1D apodisation techniques [253], the current expansion can be used

to implement 2D apodisation and masking techniques to synthesise arbitrary fields

in the focal region of a high NA focusing system, as discussed by the author in [72].

6.2.1 Derivation of the eigenfunction expansion

Recall from Section 4.5 that the Debye-Wolf integral can be written

E(ρ, ϕ, z) = −if
λ

∫ 2π

0

∫ α

0

e(θ, φ) exp [ikρ sin θ cos(φ− ϕ)] eikz cos θ sin θdθdφ , (6.1)

where (ρ, ϕ, z) defines a position in the focal region of a lens (in air) of focal length

f and numerical aperture sinα, illuminated with light of wavelength λ = 2π/k. The

coordinates (θ, φ) define the direction of a ray, with polarisation given by e(θ, φ) on
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6.2 Eigenfunction expansion of the Debye-Wolf diffraction integral

the Gaussian reference sphere of the lens (see Figure 4.2).

To begin the derivation, the defocus term, exp [ikz cos θ], in Eq. (6.1) is rewritten,

using the Jacobi-Anger expansion [4], as

exp[ikz cos θ] =
∞∑

m=−∞

imJm (kz) exp [imθ] =
∞∑

m=−∞

Jm (kz) exp
[
im
(π

2
− θ
)]
,

(6.2)

where Jm (· · · ) is the Bessel function of the first kind of order m. Substituting

Eq. (6.2) in Eq. (6.1), gives

E(ρ, ϕ, z) = −if
λ

∞∑
m=−∞

Jm (kz)

∫ 2π

0

∫ α

0

e(θ, φ) exp [ikρ sin θ cos(φ− ϕ)]

× exp
[
im
(π

2
− θ
)]

sin θdθdφ , (6.3)

Eq. (6.3) can be simplified through the coordinate transformation u = sin θ

whereby cos θ =
√

1− u2 and dθ = du/cos θ. Substituting this transformation into

Eq. (6.3) yields

E(ρ, ϕ, z) = −if
λ

∞∑
m=−∞

Jm (kz)

∫ 2π

0

∫ uα

0

a(u, φ) exp [ikρu cos(φ− ϕ)]ududφ , (6.4)

where uα = sinα and

a(u, φ) =
e(u, φ)√
1− u2

exp
[
im
(π

2
− sin−1 u

)]
. (6.5)

The function a(u, φ) is space-limited, so it can be expanded in terms of gener-

alised circular prolate spheroidal functions (see Appendix B), which are eigenfunc-

tions of the two-dimensional finite Hankel transform [105, 258], viz.

a(u, φ) =
∞∑

N=−∞

∞∑
n=0

Am,N,nΦ|N |,n(u, c) exp (iNφ) , (6.6)
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where

Am,N,n =
1

2πλ|N |,n

∫ 2π

0

∫ uα

0

a(u, φ) Φ|N |,n(u, c) exp (−iNφ)u du dφ , (6.7)

are vector expansion coefficients and c is a parameter equal to, or larger than, the

radial space-bandwidth product (see Appendix B) of a(u, φ) for 0 < φ ≤ 2π [78].

Upon substitution of Eq. (6.6) into Eq. (6.4) and changing the order of the

integration and summation,

E(ρ, ϕ, z) = −if
λ

∞∑
m=−∞

Jm(kz)
∞∑

N=−∞

∞∑
n=0

Am,N,n (6.8)

×
∫ 2π

0

∫ uα

0

Φ|N |,n(u, c) exp(iNφ) exp [ikρu cos(φ− ϕ)]ududφ

is obtained. Using the expansion exp [ikρu cosφ] =
∑∞

Q=−∞ i
QJQ (kρu) exp (iQφ)

and the fact that cos(φ − ϕ) = cos(ϕ − φ) and
∫ 2π

0
exp (i (N −Q)φ) dφ = 2πδNQ

produces

E(ρ, ϕ, z) = −ikf
∞∑

m=−∞

Jm (kz)
∞∑

N=−∞

iN exp(iNϕ) (6.9)

×
∞∑
n=0

Am,N,n

∫ uα

0

Φ|N |,n(u, c)JN (kρu)udu .

Further noting that for N < 0 the relation JN (x) = (−1)N J|N | (x) holds and that

iN (−1)N = i−N = i|N | yields

E(ρ, ϕ, z) = −ikf
∞∑

m=−∞

Jm (kz)
∞∑

N=−∞

i|N | exp(iNϕ) (6.10)

×
∞∑
n=0

Am,N,n

∫ uα

0

Φ|N |,n(u, c)J|N | (kρu)udu .

Using the eigen-equation [78]∫ r0

0

Φ|N |,n (c, r) J|N | (ωr) rdr = (−1)n
(r0

Ω

)√
λ|N |,nΦ|N |,n

(
c,
r0ω

Ω

)
, (6.11)

where Ω = ωmax, with the appropriate replacements r0 = uα, ω = kρ and Ω = kρmax,
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6.2 Eigenfunction expansion of the Debye-Wolf diffraction integral

where ρmax defines the transverse field of view in the focal region (see Appendix B),

finally yields the expansion

E(ρ, ϕ, z) =− ikf
(

uα
kρmax

)
(6.12)

×
∞∑

m=−∞

∞∑
N=−∞

∞∑
n=0

i|N |Am,N,n(−1)n
√
λ|N |,nΦ|N |,n

(
c,
uαρ

ρmax

)
Jm(kz) eiNϕ ,

where c = uαkρmax.

In the preceding derivation no assumption was made as to the form of the incident

polarisation e(u, φ). Consequently the formulation given is suitable for representing

the field in the focal region produced by an arbitrary illumination. For example the

field on the reference sphere e(u, φ) could be given in the form (c.f. Eq. (4.47))

e(u, φ) = g(u, φ)e iΨ(u,φ)Q(u, φ)Ẽ(u, φ) , (6.13)

where g(u, φ) and Ψ(u, φ) describe an amplitude and phase variation that could

be introduced to the incident field distribution by pupil plane masks and Q(u, φ)

describes the action of the lens and maps the field to the Gaussian reference sphere

as discussed in Section 4.5.

6.2.2 Properties of the eigenfunction expansion

On examining the eigenfunction expansion of the Debye-Wolf integral (Eq. (6.12)),

a number of desirable, optimal and physical properties can be identified. Firstly,

the component functions Jm (kz), exp (iNϕ), Φ|N |,n (c, uαρ/ρmax) are separable in

cylindrical coordinates which could simplify analysis involving fields in the focal

region of a high NA focusing system.

Secondly, the double integral in Eq. (6.8) represents a finite Hankel transform

of the generalised prolate spheroidal functions. As a linear operator, this transform

takes its simplest possible form, i.e., diagonal, through its eigen representation given

in Eq. (6.12).

Thirdly, one of the defining properties of the generalised prolate spheroidal func-

tions is that Φ|N |, 0 (r, c) maximise the fractional energy within a circular region of
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radius r0 over the class of all bandlimited functions [78]. Thus the summation over

N has maximum energy packing properties in both the radial and azimuthal direc-

tion when n = 0. More generally, the eigenvalues, λ|N |,n, describe the fractional

energy within the circular region for each generalised prolate spheroidal function.

Fourthly, as shown in Figure 6.1(a), the eigenvalues of the generalised prolate

spheroidal functions are seen to decrease monotonically to very small values, com-

pared to their initial values, after certain orders |N | ≥ |N0| and n ≥ n0. Fur-

thermore, as shown in Figure 6.1(b), Bessel functions of the same argument, but

of increasing orders, also decrease to very small values after some order m ≥ m0.

Computationally these properties are desirable since it implies fast convergence of

the eigenfunction expansions in the azimuthal, radial and axial directions.

The presented representation of the field in the focal region of a focusing sys-

tem uses scalar basis functions and vector coefficients. Equivalently this can be

viewed as a separate expansion for each field component, for which the basis field

distributions are unaltered by the focusing operation. In Figure 6.2 the in-focus

(z = 0) eigenfunctions, which reduce to the generalised prolate spheroidal functions

are plotted. Defocused eigenfunctions however are further modulated by a Bessel

function dependent on the axial coordinate. For low numerical aperture systems

the polarisation properties of light become less important, often allowing a scalar
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Figure 6.1: (a) Monotonically decreasing eigenvalues of the circular prolate spheroidal
functions as order (N,n) increases (c = 20). A value of λ|N |,n = 10−4 was used to determine
a suitable truncation point for the infinite series inherent in the eigenfunction expansion;
(b) Finite summation limit for Bessel terms required for different defocus distances again
based on a cutoff point of 10−4.
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Figure 6.2: Absolute magnitude of the generalised prolate spheroidal functions of or-
der (N,n). Distributions represent 2D component-wise eigenfunctions for the operator
describing the transformation of a field distribution in the back focal plane of a high NA
focusing lens to the focal plane (z = 0), such that the summation over m in Eq. (6.12)
can be safely neglected.

treatment to be used. Under such circumstances the field distributions shown in

Figure 6.2 can be interpreted as the true eigenfunctions of the focusing operation.

At higher numerical apertures the distributions shown are not strictly eigenfunctions

of the Debye-Wolf integral since they are scalar functions, however they do remain

eigenfunctions on a component-wise basis, i.e. if x-polarised light with amplitude

distribution given by the (N, n)th order were focused, the x component of the output

field would also have the same (albeit scaled) distribution.

Higher order functions are seen to contain a larger fraction of energy in the

sidelobe structure, which itself becomes progressively more complicated as the order
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Figure 6.3: Variation of eigenvalues λ|N |,n of the generalised prolate spheroidal functions
as the numerical aperture of the focusing optical system is continuously changed. Different
plots correspond to different prolate orders (N,n).

increases (more nodal points). Furthermore, only the N = 0 modes are seen to

possess a central focal spot. Put another way, the higher order functions contain

higher spatial frequencies however energy is not concentrated as efficiently into the

central region. Consequently more complicated masking optics will, in general,

require more terms to be calculated in the eigenfunction expansion to accurately

determine the field in the focal region.

Finally in Figure 6.3 the variation of the eigenvalues, λ|N |,n, with NA of the

focusing system is shown. The decrease of the eigenvalue for a given order (N, n)

as the NA decreases is clearly evident. This dependence means that higher orders

are energetically less significant in the focused distribution and hence the dominant

orders are those with lower spatial frequencies. The dominant modes in the focal

region hence provide a characterisation of the resolution of the optical system.
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6.2 Eigenfunction expansion of the Debye-Wolf diffraction integral

6.2.3 Numerical examples

To verify the validity of the eigenfunction expansion, Eq. (6.12) is used to calcu-

late the field distributions in the Gaussian focal plane and a defocused plane for a

horizontally polarised incident beam, and compared to the corresponding distribu-

tions obtained by the direct evaluation (numerical integration) of the Debye-Wolf

integral (c.f. Figure 4.3). Assuming the availability of tabulated values or com-

puter routines1 to evaluate Bessel functions and circular prolate spheroidal functions

[61, 155], the main task to evaluate the eigenfunction expansion is to determine the

space-bandwidth product c and suitable finite limits for the three summations in

Eq. (6.12). The parameter c has to be equal to or larger than the radial space-

bandwidth product of the function a(u, φ) for all values 0 < φ ≤ 2π. In addition,

c = uαkρmax, thus for a given NA, c determines the radial field of view, ρmax, in the

plane of interest. For the following numerical examples, a value of c = 20 was found

to satisfy these two requirements.

From Figure 6.1(a) truncation orders of |N0| = 23 and n0 = 8 are found for

c = 20, whilst from Figure 6.1(b), and assuming a defocus distance of z = λ,

m0 = 14 is found to be an appropriate limit for the summation with respect to m.

Figures 6.4 and 6.5 show the pointwise relative error between the optical distri-

butions due to a linearly polarised incident beam, at the Gaussian focal plane and

at a defocused plane, z = λ, respectively, obtained by evaluating the eigenfunction

expansion, Eq. (6.12), with finite summation limits and by direct integration. The

actual calculated optical distributions are also shown in the insets.

To confirm that these optical distributions are indeed equal to the ones obtained

by direct evaluation of the Debye-Wolf integral, an overall percentage error factor,

∆, is defined as

∆ =

(∑
k

∑
l

∣∣∣Idirect
k,l − Iexpansion

k,l

∣∣∣/∑
k

∑
l

Idirect
k,l

)
· 100 , (6.14)

where Idirect
k,l and Iexpansion

k,l are the intensities at point (k, l) obtained by evaluating

1Paul Abbott and Peter Falloon from the Physics Department of the University of Western Aus-
tralia kindly provided the Mathematica code necessary to compute Slepian’s generalised spheroidal
functions, for which the author is particularly grateful.
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Figure 6.4: Pointwise relative error (defined as |Xdirect
k,l − Xexpansion

k,l |/|Xdirect
k,l |) of the

electric field components (Xk,l = Ej(ρk,l)) and intensity (Xk,l = I(ρk,l)) distributions at
the Gaussian focal plane, when calculated using the eigenfunction expansion, as compared
to direct integration (x polarised incident illumination, NA = 0.966). Strong horizontal
and vertical lines are seen due to zeros in the field distributions. Insets show absolute
magnitude of the field and intensity distributions calculated using the eigenfunction rep-
resentation.

the Debye-Wolf integral and the eigenfunction expansion respectively. On applying

Eq. (6.14) to the above numerical examples, the associated errors ∆ are found to

be 0.0253% and 0.065% at the Gaussian focal plane (Figure 6.4) and at a defocus

distance z = λ (Figure 6.5), respectively. This overall error is very small, bearing in

mind the relatively small number of terms used to evaluate Eq. (6.12). Furthermore

it is found the variation of the total percentage error as the NA is increased from 0

to 0.966 is of order 0.003% and is hence negligible.
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Figure 6.5: As Figure 6.4 except electric field and intensity distributions are calculated
at a defocused plane (z = λ).

6.3 Inversion of the Debye-Wolf diffraction inte-

gral

Synthesis of arbitrary field distributions in optical systems is useful for a wide variety

of applications including lithography [59], optical data storage [20], atomic manip-

ulation [237] and polarisation microscopy [118]. A significant number of alternative

methods by which to produce a desired field distribution exist, such as apodisation

or phase masks [52], polarisation structuring [38] and computer generated holograms

[82, 157]. Numerical optimisation is however normally used to determine the appro-

priate mask or field distribution to use [324]. To the best of the author’s knowledge

there does not currently exist an analytic method to invert the Debye-Wolf integral

in the literature. The eigenfunction expansion presented above however allows this

situation to be remedied.
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In principle the new method allows an arbitrary field distribution to be specified

in the focal region of a high NA lens and the appropriate weighting function, or

equivalently the pupil plane distribution, to be calculated. Furthermore, due to the

simple form of the inversion, it is still amenable to numerical optimisation should

extra constraints need to be introduced to the system, allowing existing optimisation

tools to be exploited. Such constraints may include the pixelation of masking optics,

a feature often encountered when using spatial light modulators (SLMs) [206] for

example, which limits the level of fine structure producible in any physical mask

and thus any pupil plane field distribution.

Given Eq. (6.12) for the field in the focal region of a high NA lens and the or-

thogonality of the generalised prolate spheroidal functions as described by Eq. (B.4)

it is possible to invert the Debye-Wolf integral as follows. Consider multiplying both

sides of Eq. (6.12) by the conjugate of the generalised prolate spheroidal function

of order (Q, q) and integrating over the field of view (as set by ρmax) in the focal

region2. This yields the result∫ 2π

0

∫ ρmax

0

E(ρ, ϕ, z) Φ|Q|,q

(
uαρ

ρmax

)
exp(−iQϕ)ρdρdϕ

= −2πikf

(
kρmax

uα

) ∞∑
m=−∞

∞∑
N=−∞

∞∑
n=0

i|N |Am,N,n(−1)nλ
3/2
|N |,nδQNδqnJm(kz) .

(6.15)

The Kronecker deltas eliminate all but a single term within the double summation

over N and n, namely the term for which Q = N and q = n. Thus

BN,n = −ikf
(
kρmax

uα

)
i|N |(−1)nλ

1/2
|N |,n

∞∑
m=−∞

Am,N,nJm(kz) , (6.16)

where

BN,n =
1

2πλ|N |,n

∫ 2π

0

∫ ρmax

0

E (ρ, φ, z) Φ|N |,n

(
uαρ

ρmax

)
exp (−iNϕ) ρdρdϕ . (6.17)

2Mathematically the same inversion procedure can be followed using integration over an infinite
plane in the focal region, however here the mathematics is demonstrated using a restricted domain
since such integrations are more suitable for numerical routines.
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6.3 Inversion of the Debye-Wolf diffraction integral

Trivial algebraic rearrangement of Eq. (6.16) yields an infinite set of linear equations,

∞∑
m=−∞

Jm (kz) Am,N,n =
i

kf

(
uα

kρmax

)
(−1)n

i|N |
λ
−1/2
|N |,n BN,n , (6.18)

which unfortunately cannot be solved analytically to determine the desired coef-

ficients Am,N,n, but can however form the basis for numerical optimisation tech-

niques, an example of which is given in Section 6.3.2. Unique solution can however

be achieved on the focal plane, i.e. when z = 0, whereby

Jm(kz)
∣∣∣
z=0

=

 1 for m = 0

0 otherwise
, (6.19)

yielding the simple relation

AN,n =
i

kf

(
uα

kρmax

)
(−1)n

i|N |
λ
−1/2
|N |,n BN,n . (6.20)

For in-focus distributions the expansion of the defocus term (Eq. (6.2)) is not re-

quired in the derivation of Eq. (6.12) and hence the subscript m has now been

dropped. This equation shows that the coefficients of the expansion of the weight-

ing function are merely a scaled version of the coefficients of the expansion of the

field in the focal plane as would be expected for an eigenfunction expansion. This

is the basic inversion formula for the Debye-Wolf integral.

6.3.1 Some notes on inversion

Although a formula to invert the Debye-Wolf integral has now been derived, nu-

merous problems may be encountered if it is used incorrectly. In this section some

principles and caveats to use of Eq. (6.20) are thus presented.

6.3.1.1 Degrees of freedom

The underlying purpose of inversion of the Debye-Wolf integral is to provide a means

by which to generate a desired field distribution. As it stands Eq. (6.20) describes

how to find the expansion coefficients of all three components of a(u, φ), if all field
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components were specified in the focal region. A näıve approach such as this would

however not guarantee physicality or realisability. Maxwell’s equations mean that

at best only two field components can be specified in the focal region and used for

inversion, however there is no restriction on which components are chosen.

Furthermore, since some form of additional optics, e.g. a pupil plane mask, must

be introduced into the system so as to modify the weighting function, there are ad-

ditional constraints on the specification of the electric field on the focal plane. These

constraints arise from the degrees of freedom inherent in the optics introduced. To

illustrate this point consider use of an apodisation mask in the exit pupil of the sys-

tem. This introduces only a single degree of freedom to the system, that is to say,

only the amplitude of the field in the pupil plane can be modified and not its phase.

In turn, this translates to the requirement that the field component specified in the

focal region must be complex Hermitian, such that Ej(ρ) = E∗j (−ρ). Combination

of a phase and apodisation mask would however provide two degrees of freedom,

allowing an arbitrary phase and amplitude profile to be specified for a single field

component in the focal plane. A polarisation mask similarly provides two degrees of

freedom hence two field components in a focal plane can be specified without con-

straints if amplitude, phase and polarisation masks are used concurrently. Assuming

more degrees of freedom than are present in a particular optical setup will lead to

inconsistent inversion results that will not reproduce the desired field distribution

and should hence be avoided.

6.3.1.2 Field specification away from the focal plane

Inversion was previously restricted to the focal plane since it is not possible to solve

a set of (2N0 +1)× (n0 +1) equations for (2m0 +1)× (2N0 +1)× (n0 +1) unknowns

uniquely. This restriction can however be circumvented under certain circumstances.

If only a single field component is specified on a plane in the focal region, but

not necessarily the focal plane it is then possible to propagate this field to the focal

plane by means of scalar techniques such as the angular spectrum method. Once

the field on the focal plane has been obtained in this manner Eq. (6.20) can be used

as prescribed above.

Alternatively, if two field components are specified then it is again possible to
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6.3 Inversion of the Debye-Wolf diffraction integral

propagate the field to the focal plane, however vector formulations, such as e- and

m- theory must instead be used [136].

6.3.1.3 Extrapolation and encircled energy

Specification of a desired field distribution in the focal plane over an infinite region

is not only impractical, but also superfluous to physical requirements. As such,

the inversion formula assumes the field is specified over a finite region of maximum

extent ρmax. So as to ensure the completeness of the prolate functions over the

specification area it is necessary to use the appropriate space-bandwidth product

c = kuαρmax when calculating the coefficients from Eq. (6.17).

Perhaps the most important issue arising from only specifying a finite area is the

resulting behaviour of the field outside of this region. Superresolution is a concept

in which the synthesis of a focal spot smaller than the Rayleigh diffraction limit is

attempted [224, 253], and provides a good example to highlight how this can be of

relevance.

Consider specifying a sub-diffraction focal spot in Ex as shown in Figure 6.6(a)
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over a circle of radius ∼ 1.6 times that of the Airy disc. Expansion of the specified

field in terms of generalised prolate spheroidal functions as per Eqs. (6.12) and (6.17)

allows extrapolation of the field beyond this region since [78]

f(ρ) =
∞∑
n=0

λ−1
N,nΦN,n(ρ)

∫ ρmax

0

f(ρ′)ΦN,n(ρ′)ρ′dρ′ for
ρ > 0 if N > 0

ρ ≥ 0 if N = 0
. (6.21)

This equation states that with knowledge of the function f(ρ) over a finite region

0 ≤ ρ ≤ ρ0 it is possible to extrapolate to all values of ρ > 0 and is a consequence

of the duality of completeness and orthogonality of the circular prolate spheroidal

functions (see Appendix B).

The resultant field from extrapolation of the field distribution of Figure 6.6(a)

is shown in Figure 6.6(b). It can be seen that a significant fraction of energy is

pushed out into the sidelobe/peripheral structures. When calculated, the encircled

energy is found to be 6.86× 10−4. This behaviour arises since the high order modes

contribute significantly as shown in Figure 6.6(c) and thus energy is pushed out of

the specification area as discussed in Section B.1.4.

6.3.1.4 Noise amplification

Hadamard defined a number of criteria which a mathematical problem must meet

to be well-posed [329], namely that a unique solution exists that depends contin-

uously on the data, i.e. is stable. Inverse problems, such as that considered here,

are however in general ill-posed, i.e. violate one or more of these conditions. Pre-

dominantly such a situation arises due to sensitivity to the initial data, which in the

problem under consideration is a specified field distribution. In terms of inversion of

the Debye-Wolf integral, errors in the specified field arise since the series expansion

must be truncated for computational purposes.

Again the concept of the condition number of an inversion problem, κ, can be

used to quantity the amplification of noise and errors in the initial data to the

final inversion [100]. When using an eigenfunction inversion method the condition

number can be defined as the ratio of the largest and smallest non-zero eigenvalue3,

3This definition of the condition number differs from that used in Chapter 5, however is more
appropriate to an eigenfunction analysis.
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that is

κ =
λ0,0

λ|N0|,n0

≈ 1

λ|N0|,n0

, (6.22)

where λ|N0|,n0 is the value of the smallest eigenvalue used in the truncated series

expansion. It is thus advisable to use orders that lie within or close to the plateau

of eigenvalues of Figure 6.1(a) to reduce noise amplification. Since small eigenvalues

(high orders) correspond to high frequency components better inversion will be

obtained for smoother, slower varying fields.

6.3.1.5 Pixelation

A final consideration that may arise in many practical systems is that of pixelation.

Exact reproduction of the required pupil plane field distribution is generally not

possible in practice due to the pixelated nature of the liquid crystal SLMs often

used to implement complex masks [206] and as such an error on the focused field

distribution is introduced. Choosing individual pixel values so as to minimise this

error is then a further problem. Fortunately, since focusing is a unitary transforma-

tion i.e. one in which the inner product is conserved, minimisation of the root mean

square (RMS) error in the focal plane is equivalent to minimising the RMS error in

the exit pupil between the ideal and the pixelated mask. Doing so requires that the

(j, k)th pixel of the SLM be set such that the output field is the average of the ideal

profile over the domain Πjk of the pixel i.e.

Ẽjk =
1

Sjk

∫∫
Πjk

Ẽ(u, φ)ududφ , (6.23)

where Sjk denotes the area of the (j, k)th pixel.

6.3.2 Examples

6.3.2.1 Superresolution

In this section, a few examples are given so as to illustrate the inversion procedure,

the first of which again considers the topic of superresolution. The use of apodising

pupil plane masks for such a purpose has previously been considered [52, 103],
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however use of a polarisation structured beam to obtain superresolution is attempted

here.

In an attempt to reduce the width of the intensity profile, consider specifying

the Ex field component as a Dirac delta function centered on the origin. Only

one component of the focused field is specified since this introduces two degrees of

freedom into the inversion problem as required for polarisation structuring. Ex is

hence written in the form

Ex(ρ, ϕ, 0) =
1

ρ
δ

(
uαρ

ρmax

)
δ(ϕ) , (6.24)

=
∞∑

N=−∞

∞∑
n=0

λ−1
|N |,nΦ|N |,n

(
c,
uαρ

ρmax

)
Φ|N |,n(c, 0) exp (iNϕ) , (6.25)

where the second step has used the completeness property of the generalised prolate

spheroidal functions (c.f. Eq. (B.4)). Applying the inversion formula (Eq. (6.20))

and noting Φ|N |,n(0) = 0 for N 6= 0, immediately gives

AxN,n =


i
kf

(
uα

kρmax

)
(−1)nλ

−1/2
0,n Φ0,n(c, 0) for N = 0

0 for N 6= 0
, (6.26)

where the superscript x denotes the x-component of Am,N,n.

Using Eq. (6.13) and noting that for a purely polarised structured beam of unit

intensity Ẽ2
x = 1−Ẽ2

y , a quadratic equation in terms of Ẽx can be found, from which

the required incident field distributions can be calculated. In practice however this

method does not achieve superresolution for the simple reason that insufficient con-

trol is exerted on the y and z components of the focused field. As such when a delta

function is specified for the x component, energy is pushed into the y component.

The resultant focused distribution is then essentially identical to that of a uniformly

y polarised beam for which there is no resolution improvement.

Consider then specifying both the Ex and Ey focused field components to be

Dirac delta functions. By the same logic this means AxN,n = AyN,n as given by

Eq. (6.26). Since aj(u, φ) =
∑∞

n=0A
j
0,nΦ0,n(c, u) (for j = x, y, z) the required inci-

dent field distributions can be found using the inverse of Eq. (6.13) and Eq. (6.26)
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and are given by

Ẽx(u, φ) =
1√

(1− u2)

Q21 −Q22

Q11Q22 −Q12Q21

∞∑
n=0

Ax0,nΦ0,n(c, u) ,

Ẽy(u, φ) =
1√

(1− u2)

Q12 −Q11

Q11Q22 −Q12Q21

∞∑
n=0

Ax0,nΦ0,n(c, u) , (6.27)

where Qpq denotes the (p, q)th element of Q.

Having specified two field components on the focal region plane means there are

four degrees of freedom within the system. Such a situation could correspond to

the combination of polarisation structuring, apodisation and phase modulation in

the pupil plane. However since AxN,n and AyN,n are both real the weighting functions

ax(u, φ) and ay(u, φ) are real4. Projecting back to the pupil plane is not a complex

operation and hence the field in the pupil plane is also real. It is thus apparent that

the field in the pupil plane is linearly polarised and only binary phase modulation

is necessary. Apodisation is necessary as can be seen by considering

g(u, φ) =
(
|Ẽx|2 + |Ẽy|2

)1/2

=

√
2− u2(1− sin 2φ)

2(1− u2)

∞∑
n=0

Ax0,nΦ0,n(c, u) , (6.28)

where a renormalisation of the incident field Ẽ is required to ensure the mask is

passive.

Practically, the series in Eqs. (6.27) must be truncated at say n = n0, meaning

the pupil and focal plane field distributions will differ from the ideal case in a way

that is dependent on the truncation point. Figure 6.7(a) represents the required

pupil plane distribution for n0 = 1 whilst Figure 6.8 shows the corresponding optical

distribution in the focal plane. The shown distributions were calculated assuming

NA = 0.966 and a value of c = 4, corresponding to a field of view in the focal plane

approximately the size of the Airy disc.

From Figure 6.8 it can be seen that there has been a resolution gain in the Ex and

Ey distributions as compared to a clear aperture with uniform illumination, however

there is little gain in the intensity focal spot. This again arises from a redistribution

of energy to the unconstrained field component Ez which is then dominant in the

4The factor of i in Eq. (6.26) represents a global phase and can safely be ignored.
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Figure 6.7: (a) Colour plot showing the transmittance of the apodising mask in the
pupil plane, whilst white lines represent the plane of oscillation of the electric field vector.
(b) Variation of the Strehl intensity ratio and the encircled energy for the Ex and Ey
components as the mask order n0 is increased.

final intensity profile. Furthermore, due to the presence of the apodising mask this

arrangement also has a low optical efficiency, as can be seen in the plot of the

Strehl intensity ratio (defined in [18]), shown in Figure 6.7(b), as a function of the

truncation order n0. At high n0 this quantity loses its meaning however since the

central peak essentially vanishes with respect to the large sidelobes, as would be

expected from the discussion in Section 6.3.1.3. The performance of this particular

superresolution setup consequently worsens as n0 is increased.

6.3.2.2 Single molecule detection

As a second example consider trying to determine the orientation of a single flu-

orescent molecule. This often entails the use of a high NA optical system which

provides the better resolution needed to select individual fluorophores. Many ex-

isting methods are limited to determination of the transverse angle [97, 257] and

as such it would be desirable to couple light into the transverse orientation effi-

ciently so as to improve the signal to noise ratio5. A fluorophore, modelled as a

fixed electric dipole of moment p, illuminated by a field E re-radiates light as if

it had an effective dipole moment proportional to |p · E|. Efficient coupling thus

entails minimising the longitudinal component of the focused field. Inverting a field

5A technique, developed by the author and colleagues, capable of measuring the longitudinal
orientation is presented in Chapter 8.
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structured beam with truncation point n0 = 1 (top) for NA = 0.966 and c = 4. White
circles again denote the extent of the Airy disc. Variation of the central intensity focal
spot over the Airy disc as mask order n0 is increased (bottom). Note the intensity scales
differ with each plot, but have been equalised for easy comparison.

specification of Ez = 0 gives a zero strength vector, meaning that such a specifica-

tion cannot be achieved via apodisation or phase masks. However, a beam with a

non-uniform polarisation distribution can be used. There exist numerous methods

to produce these so-called vector beams including: modification of laser cavities,

via introduction of polarisation sensitive components such that only modes with

the desired polarisation structure can lase [202]; interferometric methods, which su-

perpose orthogonal polarisation states with appropriate phase and intensity profiles
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[273]; and subwavelength gratings, which act as uniaxial crystals whose structure

determines the birefringence [17].

Although these methods are typically used to generate radially and azimuthally

polarised vector beams, it is possible to make more arbitrary vector beams by similar

methods [285] or alternatively by using computer generated holograms and SLMs

[205]. Of these, [205] is perhaps the most versatile being capable of dynamic modula-

tion. Due to the pixelated nature of the SLMs however undesired diffraction effects

can be introduced and complex algorithms are required. Toussaint et al. [285]

avoided these issues albeit at the cost of reduced light throughput and complexity

of the required optical setup.

In the ideal non-pixelated case the weighting function appropriate to a vector

beam input is given by Eq. (6.13) with g(u, φ) = 1 and Ψ(u, φ) = 0. It has been

observed that azimuthally polarised light, when focused, has a very weak longitudi-

nal component [323]. Results from inversion agree with this observation as shown

in Figure 6.9, however a true azimuthal pattern is not seen due to an angular am-

biguity in the inversion, meaning one half of the pattern is rotated by 180◦. If the

calculated polarisation structure is re-input into the forward focusing problem the

maximum value of the longitudinal component is of order 10−17; a number most

likely attributable to numerical noise and inversion hence gives a suitable solution.
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6.3.2.3 Extended depth of field

As a final example, extension of the depth of field in imaging systems is treated.

In its most basic form extension of the depth of field can be considered as a prob-

lem of reducing the intolerance to defocus as judged by some pre-agreed figure of

merit. Extended depth of field (EDF) in imaging systems has been considered by a

number of researchers and engineers since it can become an important issue when

imaging three dimensional objects and for design tolerances in optical systems. By

far the most commonplace technique of extending the depth of field in an imaging

system is by means of pupil plane engineering [55, 211, 308]. Other techniques also

exist, including axial scanning and hybrid systems employing post-detection signal

processing [226, 251], however a discussion of such methods will not be given here.

Instead, a numerical example is given in which the incident beam is assumed to be

uniformly x polarised. Consequently only the Ex field component contributes to the

axial behaviour which is thus specified as

Ex(0, 0, z) = E0 rect
( z
w

)
, (6.29)

where E0 is a constant and w denotes the half width of the rect function. On axis

Eq. (6.18) reduces to

∞∑
m=−∞

Jm (kz)Axm,0,n =
i

kf

(
uα

kρmax

)
(−1)n

λ
−1/2
0,n

Bx
0,n , (6.30)

since Φ|N |,n(0) = 0 for N 6= 0, i.e. only N = 0 orders contribute on axis.

Using Eqs. (6.17), (6.29) and (6.30) it is possible to numerically optimise the

coefficients to find a good solution to the problem. One method of doing this is that

of simulated annealing [144] in which random steps are taken with a probability that

depends on a control parameter T which is slowly reduced. In simulated annealing,

a loss function is defined which is analogous to the energy in an annealing process.

For the current example this was taken as the Hilbert angle ψH as defined by

cosψH =
〈|Ex(0, 0, z)|2, |Eopt

x (0, 0, z)|2〉
‖|Ex(0, 0, z)|2‖1/2 ‖|Eopt

x (0, 0, z)|2‖1/2
, (6.31)
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where

〈
|Ex(0, 0, z)|2, |Eopt

x (0, 0, z)|2
〉

=

∫ ∞
−∞
|Ex(0, 0, z)|2|Eopt

x (0, 0, z)|2dz , (6.32)

and

‖|Ex(0, 0, z)|2‖ =

∫ ∞
−∞
|Ex(0, 0, z)|4dz . (6.33)

The Hilbert angle is a measure of the similarity between the shape of the desired

and optimised distributions Ex(0, 0, z) and Eopt
x (0, 0, z) respectively [251] ranging

from 0 if they are identical, to π/2 if they are orthogonal6. Suitable truncation

points for termination of the series in Eq. (6.30) can be determined as discussed in

Section 6.2.2 so as to ensure convergence of the field expansion and was found to be

m0 = 42 for w = 3λ. Rejecting eigenvalues smaller than 10−5, so as to limit noise

amplification gave n0 = 9. The resulting axial intensity profile as found from the

850 optimised coefficients is shown in Figure 6.10(a) as compared to the desired rect

function. The minimum Hilbert angle found was approximately 7π
200

.

The corresponding apodisation mask required to produce the optimised axial

behaviour is shown in Figure 6.10(b) and is very similar in form to a sinc mask

as would be expected from McCutchen’s theorem [183, 211]. Significant energy is

however contained in the sidelobe structure (see Figure 6.10(c)) and a fuller treat-

ment may hence also incorporate a constraint of the sidelobe height by including

additional terms in the loss function.

6.4 Polarisation microscopy

6.4.1 Fisher information in microscopy

Optical microscopes are constructed so as to collect some portion of the field (or

intensity) distribution originating from a sample object, and to form a magnified

image of said field (or intensity) distribution on a scale of more practical use to an

6Whilst Eq. (6.31) strictly only compares the shape of the desired and optimised intensity
profiles with no regard to the phase distribution, this is of little consequence to the results presented
since only the intensity profile is deemed of any importance here.
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Figure 6.10: (a) Comparison between the desired axial field profile and that found from
a simulated annealing optimisation algorithm. (b) Apodisation mask required to produce
the optimised distribution (NA = 0.966). (c) Resulting intensity distribution in the focal
plane showing sidelobe pattern.

observer, be it human or machine. This rather vague description, does however ob-

scure the variety of possible operational modalities of an optical microscope, which

arise from different configurations of the illumination and collection optics. Specifi-

cally reference to conventional and confocal microscopes are commonly found in the

literature, e.g. [315]. In conventional microscopy a large area of a sample is illumi-

nated and then imaged. Each point on the object is imaged in parallel and hence if

a CCD were placed in the image plane of the objective lens a whole image could be

obtained in a single instant. Alternatively a point detector could be used to build up

the image pixel by pixel by scanning the position of the detector. Type I scanning

microscopes, which operate on this principle, have been shown to possess the same

imaging properties as a conventional microscope [309]. Confocal microscopes [249]

on the other hand illuminate only a restricted portion of the object and then image

only that region onto a point detector in the image plane of the system. Images are

constructed pixelwise via synchronous scanning of the position of the illuminating

point source and the point detector (although often it is more practical to scan the

object).

Both type I scanning and confocal microscopes will record an intensity dependent
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on the domain from which light originates on the object Ωob and the extent of the

detector Ωim, as expressed by the integral

D(Ωim,Ωob) =

∫∫
Ωim

Dim(ρ,Ωob)dρ , (6.34)

where Dim(ρ,Ωob) is the intensity at a point ρ in the detector/image plane due to

light originating from Ωob.

Assuming the detector to be corrupted by classical shot noise the results of Sec-

tion 5.2.3.1 can be used whereby the FIM matrix associated with estimation of the

parameter vector w from a set ofND intensity measurements D = (D1, D2, . . . , DND)

taken at a single point, is

Jw(Ωim,Ωob) =
∂D

∂w

†
JD
∂D

∂w
, (6.35)

where

JD =
1

hν0

diag

[
1

Di

]
(6.36)

and a potential background count has been neglected.

Scanning over the object, or image (or both), however implies that multiple

measurements are taken, a fact which has not yet been accounted for. Since Fisher

information is additive for independent measurements [80] the total FIM, JT , can

be found by summing that obtained from each measurement, i.e.

JT =
∑
k

Jw(Ωk
im,Ω

k
ob) , (6.37)

where Ωk
im and Ωk

ob denote the respective domains for each scan point7.

Given the possibility of multiple measurement configurations it is important to

consider the relative performance of each of them. As such a brief digression is

made to prove the greater informational capabilities of imaging measurements as

compared to a single, spatially averaged measurement taken over the same domain

7Measurements from different positions can be stacked into a vector format and Eq. (6.35)
used, however the assumption that the noise at each measurement position is independent allows
simplification to Eq. (6.37), such that the dimensions of D are greatly reduced.
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6.4 Polarisation microscopy

in the detection plane. For clarity, the results to follow are expressed in terms

of a single intensity measurement and a single, real, scalar parameter w, however

extension to the vector case will be discussed afterwards.

Consider first a wide area detector, which gives an output signal proportional to

the integrated intensity over the detector area Ωim. The associated Fisher informa-

tion (using Eqs. (6.34) and (6.35) and neglecting a factor of hν0) is given by

JWA =
1∫∫

Ωim
Dim(ρ,Ωob)dρ

∂

∂w

[∫∫
Ωim

Dim(ρ,Ωob)dρ

]
∂

∂w

[∫∫
Ωim

Dim(ρ,Ωob)dρ

]
,

=
1∫∫

Ωim
Dim(ρ,Ωob)dρ

∣∣∣∣∣
∫∫

Ωim

∂Dim(ρ,Ωob)

∂w
dρ

∣∣∣∣∣
2

, (6.38)

if the region of integration does not depend on the parameter w. The equivalent

result for an imaging arrangement, assuming continuous scanning such that the sum

of Eq. (6.37) can be replaced by an integral, is given by

JIM =

∫∫
Ωim

1

Dim(ρ,Ωob)

∣∣∣∣∂Dim(ρ,Ωob)

∂w

∣∣∣∣2 dρ . (6.39)

Noting that optical intensity is a positive quantity, the Cauchy-Schwarz inequality,

can be applied to Eq. (6.38) to give8

JWA ≤
∫∫

Ωim

1

Dim(ρ,Ωob)

∣∣∣∣∂Dim(ρ,Ωob)

∂w

∣∣∣∣2 dρ ,
≤ JIM , (6.40)

8The Cauchy-Schwarz inequality reads∣∣∣∣∫∫ f(ρ)g(ρ)dρ
∣∣∣∣2 ≤ ∫∫ |f(ρ)|2dρ

∫∫
|g(ρ)|2dρ ,

which, with the substitutions

f(ρ) =
1√

Dim(ρ,Ωob)
∂Dim(ρ,Ωob)

∂w
and g(ρ) =

√
Dim(ρ,Ωob) ,

yields∣∣∣∣∣
∫∫

Ωim

∂Dim(ρ,Ωob)
∂w

dρ

∣∣∣∣∣
2

≤
∫∫

Ωim

1
Dim(ρ,Ωob)

∣∣∣∣∂Dim(ρ,Ωob)
∂w

∣∣∣∣2 dρ ∫∫
Ωim

Dim(ρ,Ωob)dρ

thus leading to Eq. (6.40).
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with equality when the intensity distribution is uniform over the detection plane.

The inequality of Eq. (6.40) confirms the expectation that imaging an object field

provides more information than a single, albeit spatially extended, measurement

irrespective of the image formation process, due to the inherent averaging performed

in the latter.

This result can also be extended to include multiple intensity measurements and

vector parameters w. Such an extension hence yields a matrix inequality JWA ≤
JIM , where again the inequality implies that the difference matrix JIM − JWA is

positive semidefinite. Proof of this result centers on the positive definite nature of

FIMs, from which it follows that JWA ≤ JIM holds if tr(JWA) ≤ tr(JIM), a result

which follows by applying the derivation above to each diagonal term of the FIM

JWA individually.

6.4.2 Examples

Electric and magnetic dipoles play a pivotal role in vectorial imaging. For example

the vectorial Green’s tensors are related to dipolar sources [292]. Furthermore, elec-

tric dipole emitters represent a good model for single molecules which are currently

receiving much attention in the literature, as will be further discussed in Chapter 8.

Due to their importance, the preceding theory will now be applied to the problem of

imaging a single electric dipole. Although the theory for imaging magnetic dipoles

is very similar it is omitted here for brevity. Estimation of the position of a dipole

can be performed without resorting to polarisation based measurements and has, for

example, been considered in [210, 229]. Instead, the determination of the transverse

orientation of the dipole, as described by an angle γ (see Figure 6.11(a)) is con-

sidered in this section. Limitation to measurement of the transverse orientation is

made (i.e. χ is assumed to be π/2) since optical microscopes are unable to measure

the longitudinal component easily. Further attention will however be given to the

problem of determination of the longitudinal component of the dipole moment in

Chapter 8.

Dipolar crosstalk will also be investigated by considering the reduction in Fisher

information when a second dipole is introduced to the object plane. This example

can prove insightful when considering the multiplexed optical data storage technique
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Figure 6.11: (a) An electric dipole of moment p has a transverse and longitudinal
orientation defined by the angles γ and χ respectively. (b) Variation of KA

0
2 with defocus

distance z2, reflecting the reduction of Fisher information Jγ with defocus, when using a
crossed polariser polarimeter.

discussed in Chapter 7 by providing a first order approximation to crosstalk that can

occur between neighbouring data pits on an optical disc. In all examples Poisson

noise will be assumed as this is often present in single molecules experiments.

6.4.2.1 Transverse dipole orientation

Before calculating the Fisher information pertinent to inference of the orientation of

a single dipole, it is first necessary to calculate the associated intensity distribution

in the detector plane. To do so the simple transmission geometry of Figure 6.12

is assumed, where the collector and detector lens have numerical apertures NA1 =

sinα1 and NA2 = sinα2 respectively. The dipole, with moment p = (px, py, pz) is

assumed to lie on the optical axis in the front focal plane of the first lens, whilst the

detector is placed in the focal plane of the second lens.

Owing to the telecentric nature of a marked proportion of microscope objective

lenses the vectorial ray tracing formulation presented in Chapter 4 can again be

applied. The field distribution arising from the radiating dipole source on a sphere

located in the pupil of the first lens at infinity, can be found by considering the far
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Meridional plane

Object space Collector lens Detector lens Image space

Figure 6.12: Simple 4f telecentric imaging setup used to image a single dipole. Positions
in the object and image plane are defined by the position vectors ρ1 and ρ2 respectively,
whilst positions on the reference spheres associated with the collector and detector lens
(assumed aplanatic and with numerical apertures NA1 = sinα1 and NA2 = sinα2) are
defined by the coordinates (θ1, φ1) and (θ2, φ2). Ray directions in the respective spaces
are described by the normalised wavevectors s1 and s2.

field distribution of an electric dipole9, as given by

e1(θ1, φ1) = s1 × (s1 × p)
exp(ikρ1)

ρ1

, (6.41)

where s1 = (sin θ1 cosφ1, sin θ1 sinφ1, cos θ1)T . The exponential term is however con-

stant over a sphere and can hence be dropped. Applying the inverse of Eq. (4.47),

whereby Ẽ1(θ1, φ1) = Q−1(θ1, φ1) · e(θ1, φ1), gives the collimated field after the col-

lector lens as

Ẽ1(θ1, φ1) =
1

2
√

cos θ1


(q1 + q2 cos 2φ1)px + q2 sin 2φ1py − q3 cosφ1pz

q2 sin 2φ1px + (q1 − q2 cos 2φ1)py − q4 sinφ1pz

0

 , (6.42)

where qi(θ) are given by Eqs. (4.49).

Refocusing of the collimated field gives rise to a field, E2(ρ2 = (ρ2, ϕ2, z2)), in

the image plane as can be found by evaluation of the Debye-Wolf diffraction integral.

The calculations are very similar to those presented in Section 4.5.1 and are therefore

omitted here for brevity. Full exposition can, however, be found in [200, 278] where

9For magnetic dipoles the far field distribution takes the form (s1 × p) exp(ikρ1)/ρ1.
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it is shown that

E2(ρ2) =


px(K

A
0 +KA

2 cos 2ϕ2) + pyK
A
2 sin 2ϕ2 + 2ipzK

A
1 cosϕ2

pxK
A
2 sin 2ϕ2 + py(K

A
0 −KA

2 cos 2ϕ2) + 2ipzK
A
1 sinϕ2

−2i(px cosϕ2 + py sinϕ2)KB
1 − 2pzK

B
0

 , (6.43)

where

KA
0 =

∫ α2

0

√
cos θ2

cos θ1

sin θ2(1 + cos θ1 cos θ2)J0(kρ2 sin θ2) exp[ikz2 cos θ2]dθ2 (6.44a)

KB
0 =

∫ α2

0

√
cos θ2

cos θ1

sin2 θ2 sin θ1J0(kρ2 sin θ2) exp[ikz2 cos θ2]dθ2 (6.44b)

KA
1 =

∫ α2

0

√
cos θ2

cos θ1

sin θ2 sin θ1 cos θ1J1(kρ2 sin θ2) exp[ikz2 cos θ2]dθ2 (6.44c)

KB
1 =

∫ α2

0

√
cos θ2

cos θ1

sin2 θ2 cos θ1J1(kρ2 sin θ2) exp[ikz2 cos θ2]dθ2 (6.44d)

KA
2 =

∫ α2

0

√
cos θ2

cos θ1

sin θ2(1− cos θ1 cos θ2)J2(kρ2 sin θ2) exp[ikz2 cos θ2]dθ2 . (6.44e)

These K integrals can be evaluated numerically when complemented with the apla-

natic condition sin θ1 = β sin θ2, where β = f2/f1 is the magnification of the imaging

system as determined by the ratio of the focal lengths f1 and f2 of the two lenses.

Restricting now to on-axis detection with a point polarimetric detector, Eq. (6.43)

reduces to E2(ρ2 = 0) = (KA
0 pX , K

A
0 py, 0)T . Equivalently the on-axis, in-focus

Stokes vector is given by S(ρ2 = 0) = (KA
0

2
p2

0, K
A
0

2
p2

0 cos 2γ,KA
0

2
p2

0 sin 2γ, 0)T ,

where the substitutions px = p0 cos γ, py = p0 sin γ and pz = 0 have also been

made. Upon measurement using a polarimeter a set of ND measured intensities,

D = VTS, results. Unfortunately, inference of the dipole orientation requires the

additional estimation of the intensity S0 = KA
0

2
p2

0 . Accordingly the FIM for esti-

mation of the parameter vector w = (S0, γ)T is given by

Jw =
∂S

∂w

T

TTVTJDVT
∂S

∂w
, (6.45)
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where

∂S

∂w
=


1 0

cos 2γ −2S0 sin 2γ

sin 2γ 2S0 cos 2γ

0 0

 . (6.46)

As described in Section 3.3.1, the intensity can be treated as a nuisance parameter

and the reduced Fisher information pertaining to estimation of the dipole orientation

can be found. Bearing in mind the form of E2(ρ2 = 0), perhaps the most intuitive

approach to measurement of the dipole orientation is to use a DOAP comprising a

pair of polarisers with corresponding instrument matrix10 given by

T =
1

2

 1 cos 2ϑ1 sin 2ϑ1 0

1 cos 2ϑ2 sin 2ϑ2 0

 , (6.47)

where ϑi define the azimuthal angles of the measurement states in Poincaré space.

This approach is also justifiable since, by the model and assumptions described

above, it is known a priori that the light incident onto the detector is both fully and

linearly polarised, such that the results of Section 5.3.1.3 are applicable. Following

the discussion given in Section 5.3, it will also be assumed that V = I/ND, i.e.

that light is distributed equally among each measurement arm of the DOAP. From

Eqs. (6.36) and (6.45)–(6.47) the Fisher information Jγ can then be explicitly found,

neglecting for the moment a possible background intensity, viz.

Jγ =
2S0

hν0

sin2(ϑ1 − ϑ2)

cos2(γ − ϑ1) + cos2(γ − ϑ2)
. (6.48)

Maximum Fisher information is thus achieved when ϑ1 = ϑ2 + π/2, i.e. when the

polarisers are crossed, whereupon Eq. (6.48) simplifies to Jγ = Jmax
γ = 2S0/hν0 for

all dipole orientations.

For comparison with the following section it is useful to consider the Fisher

information Jγ when S0 is assumed known a priori. In particular for two arbitrarily

10Two measurements are required such that the resulting set of linear equations are well condi-
tioned (neglecting an ambiguity as to which quadrant the dipole lies in), when noise is absent.
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Figure 6.13: Polar plots, showing the calculated Fisher information Jγ(γ)/Jmax
γ , for

estimation of the transverse orientation γ of a single electric dipole, for zero background
intensity (a) and for S0/Db = 103 (b). Informational dips are introduced in the presence of
a background count. The longitudinal angle χ is assumed to be π/2 and the dipole assumed
to be imaged using a simple 4f system with 100× magnification, in which the collector
lens has a numerical aperture of 0.95 and measured by an on-axis DOAP configured as in
Chapter 5.

oriented polarisers the resulting expression is

Jγ = Jmax
γ

[
sin2(γ − ϑ1) + sin2(γ − ϑ2)

]
, (6.49)

which again reduces to Jγ = Jmax
γ for all dipole orientations, when the polarisers are

crossed11. This behaviour has been shown in Figure 6.13(a) in conjunction with the

results obtained when the DOAPs introduced in Chapter 5 are used to measure the

state of polarisation in focus. The improved, and γ independent performance of the

crossed polariser arrangement is evident. This behaviour arises since the DOAPs

of Chapter 5 are designed for measurement of the ellipticity, in addition to, the

azimuthal angle of a state of polarisation. Furthermore the DOAPs of Chapter 5

possess more detection arms (see Section 5.2.4), however can fully determine which

quadrant γ lies in.

Defocus in the imaging system, or equivalently an axial shift in the position of

11Whilst the notation Jmax
γ will be retained, it should be observed that when S0 is known a

priori, the maximum Fisher information is 2Jmax
γ .
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the dipole, can also be easily characterised since the axial coordinate appears only

in the K integrals12. The variation of KA
0

2
, and hence Jγ as a function of defocus

distance z2 is shown in Figure 6.11(b). Oscillatory behaviour is exhibited, however

best performance is seen within the depth of focus of the imaging system as would

be expected.

Presence of a background intensity during the measurement process however

produces some interesting behaviour and breaks the orientation independence of the

Fisher information as shall now be considered. Maintaining the assumption that S0

is known a priori for simplicity, when a background intensity Db is incorporated

(assumed the same on each detector), Eq. (6.49) becomes

Jγ = Jmax
γ

[
S0 sin2(γ − ϑ1) cos2(γ − ϑ1)

S0 cos2(γ − ϑ1) +Db

+
S0 sin2(γ − ϑ2) cos2(γ − ϑ2)

S0 cos2(γ − ϑ2) +Db

]
. (6.50)

Assuming the polarisers are crossed at angles of 0◦ and 90◦ respectively, gives

Jγ = Jmax
γ S0 sin2 γ cos2 γ

[
1

S0 cos2 γ +Db

+
1

S0 sin2 γ +Db

]
. (6.51)

Whilst in the absence of a background count, a constant Fisher information was seen,

if the limits γ → 0◦ and γ → 90◦ are taken, Eq. (6.51) yields zero Fisher information,

as shown in Figure 6.13(b) (assuming the ratio S0/Db = 103). Dipole orientations

which differ from these critical orientations however still approximately exhibit the γ

invariant behaviour of Jγ. Furthermore, it is found that as the ratio S0/Db decreases

so the width of the information dip around the critical angles increases to such an

extent that for large Db, Jγ ∝ sin 2γ. For reference, it is noted that this is of the

same functional form as when Gaussian noise is assumed.

Explanation of this behaviour can be found by first considering inference of the

orientation of a dipole using a single polariser only. The Fisher information in this

case is given by a single term of Eq. (6.51). Inference from a single polariser centers

around Malus’ law13 with a zero intensity corresponding to a dipole orientation par-

12The K integrals of Eqs. (6.44) accommodate a defocus of the detector in the image plane. If
however the dipole suffers an axial shift, zdp the exponential term exp[ikz2 cos θ2] must be modified
to exp[ik(z2 cos θ2 − zdp cos θ1)] (see [200]).

13Malus’ law states that the intensity transmitted through a polariser with transmission axis at
ϑ when illuminated with light, linearly polarised at an angle γ, is given by D ∝ cos2(ϑ− γ).
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allel to the polariser, whilst perpendicular orientations give a maximum intensity.

The scaling of the variance of Poisson noise with the mean (see Table 2.1), how-

ever, automatically implies that a zero intensity suffers no noise, such that it can be

identified exactly, whilst the converse holds for a maximum intensity. Furthermore,

Malus’ law means that small changes in the orientation of a dipole aligned close to

these critical orientations, give rise to very small changes in the measured intensity

(mathematically ∂D/∂γ = 0, when the dipole and polariser are co- or perpendicu-

larly oriented). Due to low noise levels for a perpendicularly oriented dipole, small

changes in its orientation can be distinguished. If, however, a dipole is originally

parallel to the polariser, the small intensity changes associated with small rotations

are lost in the noise.

Fisher information, being a local measure of information, quantifies the sensitiv-

ity of the recorded intensities on the dipole orientation and hence a single polariser

oriented at 0◦ yields zero Fisher information with regards to a dipole oriented at

γ = 0◦, however provides maximum information for γ = 90◦. Thus if two crossed

polarisers are used, a reduction in Fisher information from a measurement in one is

counterbalanced by a gain in the other, producing an orientation independent Jγ.

The argument above however only holds when there is no additional noise present

in the system. Additional noise, arising from say a background count, has the ad-

verse effect of masking small changes in intensity arising from small angular deflec-

tions of a perpendicularly oriented dipole, in a similar manner to how small changes

of a co-oriented dipole are lost in the inherent Poisson noise.

Larger dipole deflections give rise to larger intensity changes in the detector

and thus when measuring dipole orientations which differ significantly from the

critical angles, the background count becomes less relevant and the background free

behaviour is restored. The extent of angular deviations considered to be significantly

far from the critical orientations is naturally set by the strength of the background

noise, hence explaining the widening of the information dip as S0/Db decreases.

Informational dips such as that discussed for a pair of crossed polarisers can

also be seen for alternative DOAP architectures as shown in Figure 6.13(b). Im-

portantly, it should be noted that no dipole orientations give rise to complete loss

of Fisher information, since each of these DOAP configurations possess additional
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arms in which a non-zero information is obtained, i.e. there is a redundancy in the

measurements, for example the DOAP of Lara and Paterson (red dashed line) [154]

possesses additional polarisers at ±45◦. Polarisers at ±45◦ also suffer an informa-

tion dip for dipoles orientated at ±45◦, however these dips are then reduced by the

presence of the detection paths with crossed polarisers oriented at 0◦ and 90◦, which

yield non-zero information, in a reciprocal manner.

6.4.2.2 Dipolar crosstalk

In the preceding section the image of an on-axis dipole was calculated and used to

quantify the accuracy achievable in inferring the dipole’s orientation. Introduction

of a second, extraneous, off-axis dipole in the object plane, however modifies the

image plane distribution and thus can have consequences on any estimate of the

first dipole’s orientation, as shall now be analysed.

Consider first then the image of an off-axis dipole. Displacement of a dipole to an

off-axis position ρdp = (ρdp, ϕdp, 0)T can be modelled by assuming shift invariance of

the imaging system. Shift invariant imaging can be justified following the discussion

in [200], where the displacement is shown to introduce an additional phase term

into the Debye-Wolf diffraction integral, allowing the image of an off-axis dipole

to be calculated using Eq. (6.43) whereby Eoff-axis
2 (ρ2) = Eon-axis

2 (ρ2 − βρdp). The

image field of the jth dipole in this example (j = 1 or 2), with moment pj =

p0(cos γj, sin γj, 0)T , can then be expressed in the form

Edpj = p0


a1j+ cos γj + a2j sin γj

a2j cos γj + a1j− sin γj

a3ji cos γj + a4ji sin γj

 , (6.52)

where

a1j± = KA
0j ±KA

2j cos 2Φj , (6.53)

a2j = KA
2j sin 2Φj , (6.54)

a3j = −2KB
1j cos Φj , (6.55)

a4j = −2KB
1j sin Φj . (6.56)
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The index on the K integrals denotes the dependence on the radial coordinate

|ρ2 − βρdpj
| of the jth dipole, whilst Φj = arctan[(y2 − βydpj)/(x2 − βxdpj)].

The total intensity in the detector plane will however vary depending on the co-

herence properties of the light originating from the two dipoles. Two limiting cases

will be considered here in which the light from the dipoles is either fully incoherent

or fully coherent. The former situation may arise, for example, if imaging single

fluorescent molecules, e.g. in fluorescence microscopy [107], where the inherently

random nature of the excitation and re-emission process results in incoherent ra-

diation, such that intensities, or equivalently Stokes parameters, add in the image

plane. Alternatively, if imaging two dipoles induced by a coherent field, as may arise

in the scattering of light from gold beads, or other small scatterers [278, 291], the

dipoles radiate coherently, meaning field vectors sum in the image plane.

Detection is assumed to be performed by a scanning point DOAP comprising two

polarisers oriented at ϑ1 = 0 and ϑ2 = π/2, i.e. horizontally and vertically crossed

polarisers as described in the preceding section. Strictly, the presence of a non-zero

longitudinal field component for off-axis dipoles, necessitates a full 3D treatment as

discussed in Chapter 4, whereby generalised Stokes vectors become 9 × 1 vectors.

The instrument matrix for the two crossed polariser scenario can then be shown to

be given by

T =

 2
3

1
2

0 0 0 0 0 0 − 1
2
√

3

2
3
−1

2
0 0 0 0 0 0 − 1

2
√

3

 . (6.57)

Accordingly, the detected intensity vector (as still found using D = VTS and once

more neglecting background readings) is given by

Dinc =
1

2

 |Edp1
x |2 + |Edp2

x |2 + |Edp1
z |2 + |Edp2

z |2

|Edp1
y |2 + |Edp2

y |2 + |Edp1
z |2 + |Edp2

z |2

 , (6.58)

for the incoherent dipole case, or alternatively by

Dcoh =
1

2

 |Edp1
x + E

dp2
x |2 + |Edp1

z + E
dp2
z |2

|Edp1
y + E

dp2
y |2 + |Edp1

z + E
dp2
z |2

 , (6.59)
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for coherently radiating dipoles.

To evaluate the extent of crosstalk between the dipoles when attempting to infer

the orientation of one dipole in the presence of Poisson noise, the FIM is again

calculated. The magnitude of the dipole moment p0 is assumed to be known a

priori for simplicity and hence so too is S0, such that

Jνγ1(γ1, γ2) =
1

Dν
1

(
∂Dν

1

∂γ1

)2

+
1

Dν
2

(
∂Dν

2

∂γ1

)2

(6.60)

for ν = coh or inc, denoting the coherent and incoherent case respectively. Calcu-

lating Jνγ1 requires the derivatives

∂Dinc
1

∂γj
= p0

[
(a2j cos γj − a1j+ sin γj) (a1j+ cos γj + a2j sin γj)

+ (a4j cos γj − a3j sin γj) (a3j cos γj + a4j sin γj)
]
, (6.61)

∂Dinc
2

∂γj
= p0

[
(a2j cos γj + a1j− sin γj) (a1j− cos γj − a2j sin γj)

+ (a4j cos γj − a3j sin γj) (a3j cos γj + a4j sin γj)
]
, (6.62)

and

∂Dcoh
1

∂γj
= p0

[
(a2j cos γj − a1j+ sin γj)(a11+ cos γ1+ a12+ cos γ2 + a21 sin γ1+ a22 sin γ2)

+ (a4j cos γj − a3j sin γj)(a31 cos γ1 + a32 cos γ2 + a41 sin γ1 + a42 sin γ2)
]
,

(6.63)

∂Dcoh
2

∂γj
= p0

[
(a1j− cos γj − a2j sin γj)(a21 cos γ1+ a22 cos γ2 + a11− sin γ1+ a12− sin γ2)

+ (a4j cos γj − a3j sin γj)(a31 cos γ1 + a32 cos γ2 + a41 sin γ1 + a42 sin γ2)
]
.

(6.64)

Examining the incoherent dipole case first, it is noted that the derivative terms,

∂Dinc
i /∂γ1, are independent of γ2 and ρdp2

, whilst the additive terms, |Edp2
i |2, (i =

x, y, z) in Eq. (6.58) are independent of γ1 and ρdp1
. As such, the second dipole

acts as a background source. For all positions and orientations of the second dipole

with a non-zero intensity at the detection point, information dips akin to those
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discussed in the single dipole example above, are introduced into the performance

characteristics of any estimator for γ1 = 0◦ or 90◦.

With respect to coherent dipoles, consider briefly the limiting case in which the

second dipole is moved to infinity, i.e. ρ2 → ∞. The functional dependence of the

K integrals of Eqs. (6.44) implies that {a12±, a22, a32, a42} → 0 as ρ2 → ∞. Under

these circumstances

∂Dcoh
1

∂γ1

→ p0

[
(a21 cos γj − a11+ sin γ1) (a11+ cos γ1 + a21 sin γ1)

+ (a41 cos γ1 − a31 sin γ1) (a31 cos γ1 + a41 sin γ1)
]

=
∂Dinc

1

∂γ1

,

∂Dcoh
2

∂γ1

→ p0

[
(a11− cos γ1 − a21 sin γ1) (a21 cos γ1 + a11− sin γ1)

+ (a41 cos γ1 − a31 sin γ1) (a31 cos γ1 + a41 sin γ1)
]

=
∂Dinc

2

∂γ1

,

whereupon it is seen that coherent and incoherent cases exhibit the same behaviour,

for large dipole separations.

Limiting forms of Jνγ1 can also be derived when the second dipole is at a finite

distance from the first, which shall now be assumed to again be located on-axis. Of

significance is the form of Eq. (6.60) when the p1 and p2 are parallel or perpendicular,

since these configurations represent the two extreme configurations. Furthermore,

the cases when p1 lies parallel or at 45◦ to the transmission axis of one of the

analysing polarisers will be considered. Expressions for Jνγ1(γ1, γ2) are hence now

given when γ1 = 0 for γ2 = 0 and π/2 and also for γ1 = π/4 and γ2 = ±π/4. For

the incoherent case

J inc
γ1

(0, 0) = J inc
γ1

(
0, π

2

)
= 0 , (6.65a)

J inc
γ1

(
π
4
,±π

4

)
=
Jmax
γ

2

[
a2

11+

a2
11+ + (a12+ ± a22)2 + (a32 ± a42)2

+
a2

11−

a2
11− + (a22 ± a12−)2 + (a32 ± a42)2

]
. (6.65b)

where the expected information loss at γ1 = 0◦ and 90◦ is clearly evident. Coherent
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superposition of the radiated dipole fields yields

Jcoh
γ1

(0, 0) = Jmax
γ

a2
22

a2
22 + a2

32

, (6.66a)

Jcoh
γ1

(
0, π

2

)
= Jmax

γ

a2
12−

a2
12− + a2

42

, (6.66b)

Jcoh
γ1

(
π
4
,±π

4

)
=
Jmax
γ

2

[
(a11+ + a12+ ± a22)2

(a11+ + a12+ ± a22)2 + (a32 ± a42)2

+
(a22 + a11− ± a12−)2

(a22 + a11− ± a12−)2 + (a32 ± a42)2

]
. (6.66c)

Inspection of the denominators in Eqs. (6.66) reveals that the longitudinal field com-

ponent arising in the image plane from the extraneous dipole, acts as a background

source, a result which also holds for more general configurations (if the dipole of in-

terest is located on-axis). Informational losses therefore can once more result. Since

the second lens is however practically of low numerical aperture, this background

term is small and the dips correspondingly narrow.

Dropping the longitudinal background term thus allows the interference effects

for coherent dipoles to be considered more closely. By evaluation of Eq. (6.60) it

can be shown that

Jcoh
γ1

(γ1, γ2) =
2p2

0K
A
01

2

hν0

= Jmax
γ , (6.67)

for all dipole configurations. The presence of a second dipole is thus seen not to

affect Jcoh
γ1

. That said a bias, in general dependent on γ1, γ2 and ρdp2
, is introduced

into an estimator, with a resulting increase in the variance, and mean squared error,

as per Eq. (3.27). As the interfering dipole is gradually moved to larger distances

the magnitude of this bias decreases, so as to restore the single dipole results of

Section 6.4.2.1.

Removal of the estimator bias could be approached by a reformulation of the

problem as one of the joint estimation of (γ1, γ2), in which the orientation of the sec-

ond dipole is treated as a nuisance parameter. To illustrate the general performance

that can be expected, a Bayesian viewpoint is adopted in which the orientation of
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Figure 6.14: (a) Calculated normalised Bayesian Fisher information Jcoh
γ1 for estimation

of the orientation of an on-axis dipole in the presence of a second extraneous dipole located
at ρdp2

= (xdp2
, 0, 0) as a function of γ1. (b) Line plots of normalised Fisher information

for γ1 = 0◦ and 90◦ as a function dipole separation. For reference, plots of K02 ±K22 are
also shown. (c) As (a) however a further background intensity count Db is introduced into
the detection process, where S0/Db = 102. (d) As (c) albeit including detector scanning
in the image plane over a square field of view with spatial extent of 6× 0.61λ/NA2. The
normalisation factor used in (d) is given by

∫
Ωim

Jmax
γ (ρ2)dρ2 = 2p20

hν0

∫
Ωim

KA
01

2(ρ2)dρ2.

the second dipole is assumed to obey a uniform PDF, i.e. fΓ2(γ2) = 1/2π and the

Fisher information for inference of γ1 calculated as a function of dipole separation

and γ1. The second dipole is assumed to lie on the positive x axis in object space

and the same imaging parameters assumed in Section 6.4.2.1 are used.

When considering the coherent, zero background results (Db = 0) shown in

Figure 6.14(a), it is also useful to consider Figure 6.14(b) which shows the variation

of Jcoh
γ1

(γ1) with dipole separation, ρdp2
= xdp2

, for γ1 = 0◦ and 90◦ (solid lines). Plots

201



Chapter 6: Information in polarisation imaging

of KA
02(ρ2)±KA

22(ρ2) (normalised such that KA
02(0) = 1) are also shown (dashed lines).

These latter plots correspond to the variation of E
dp2
x (ρ2) and E

dp2
y (ρ2) respectively.

Peaks in Jcoh
γ1

(0) are seen to correspond to zeros in E
dp2
x (ρ2), whilst maxima in

Jγ1(π/2) correspond to zeros in E
dp2
y (ρ2). Such a situation can be understood by

first noting that an x-oriented dipole yields a zero intensity in D2 when the second

dipole is absent. The presence of a second dipole hence introduces noise into D2

when E
dp2
y (ρ2) 6= 0, thus destroying the ability of an observer to identify the zero

signal from the first dipole, in an analogous manner to the formation of informational

dips. The scenario is similar for a y-oriented dipole albeit the role of the detectors

is reversed. A peak in Jcoh
γ1

(0) also corresponds to a minimum in Jcoh
γ1

(π/2) (and

vice-versa), by similar arguments.

When an independent background count Db is introduced, zero Fisher informa-

tion is seen for x- and y-oriented dipoles regardless of the position or angle of the

second dipole as shown in Figure 6.14(c), where the ratio S0/Db = 102 was assumed.

Oscillations in the Fisher information as the dipole separation is increased, origi-

nally seen for the background case, are still exhibited, albeit the modulation of the

oscillations is reduced. The extent of modulation is reduced since the information

dips are broadened by the background count hence washing out sharp variations.

As Db is further increased this modulation reduces to a more uniform behaviour.

Scanning the polarimetric detector in the image plane however, also acts to sup-

press informational oscillations as shown in Figure 6.14(d). Whilst the informational

dips at γ1 = 0◦ and 90◦ are still present, the polarisation variation of the image field

helps to overcome informational losses introduced from inference from zero intensi-

ties in one or more detectors.

6.5 Physical constraints in vectorial imaging

All electromagnetic fields must satisfy Maxwell’s equations. If, as in a noiseless

world, infinite measurement accuracy is possible, any set of measured data is con-

sistent with this requirement. In post detection processing however, the presence of

noise means any parameters inferred from measurements need not be physically cor-

rect. Unbiased estimators will, on average, produce physical parameter estimates,
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however making such claims for any particular realisation of experimental data is

questionable. Furthermore, nonlinear transformations are commonplace in electro-

magnetic inference, such as the polar matrix decomposition discussed in Section 5.4,

which may produce biased estimators. Although not necessarily disadvantageous,

this does preclude obtaining physical answers.

Incorporating physical constraints into an estimation procedure would be ex-

pected to improve the precision of an estimator, since it constitutes a form of a

priori knowledge. Furthermore, physical parameter estimates are ensured given any

realisation of data. Assessing potential gains by means of the CRLB, it has been

shown that inequality constraints, such as a positivity constraint on intensity, give

no additional performance gains [92]. Equality constraints, however, do give a reduc-

tion in the CRLB (the reduced bound being termed the CCRLB), as was discussed

in Section 3.4.1. To illustrate the potential improvement, the divergence equation

(Eq. 4.1) will be enforced in a simple 4f vectorial imaging system (see Figure 6.12)

in which the object field can be represented by means of the series expansion devel-

oped in Section 6.2. Although the problem can be formulated in terms of estimation

of the object expansion coefficients by a suitable modification to the propagation

equations to follow, only estimation of the equivalent expansion coefficients AN,n in

the back focal plane will be considered here for simplicity and brevity.

In free space Eq. (4.1) reduces to∇·E = 0. For a single plane wave the divergence

equation takes the particularly simple form s ·E = 0 where s is the unit wavevector

defining the direction of the plane wave as discussed in Section 4.5. This constraint is

thus perhaps easiest to implement over the Gaussian reference sphere in the imaging

system, since the electric field vector e(θ2, φ2) at each spatial position (θ2, φ2) can

be considered as a Jones vector specifying a single plane wave, such that

0 = sin θ2 cosφ2 ex(θ2, φ2) + sin θ2 sinφ2 ey(θ2, φ2) + cos θ2 ez(θ2, φ2) . (6.68)

Making the substitution u2 = sin θ2 and employing Eq. (6.5) (assuming the object

is in-focus such that the m mode index plays no role and is hence dropped) yields
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the equivalent expression

0 =
u2√

1− u2
2

[cosφ2 ax(u2, φ2) + sinφ2 ay(u2, φ2)] + az(u2, φ2) . (6.69)

Applying the expansion aj(u2, φ2) =
∞∑

N=−∞

∞∑
n=0

AjN,nΦ|N |,n(u2) exp (iNφ2) (as per

Eq. (6.6)) and forming the inner product of Eq. (6.69) with Φ|Q|,q(u2) exp (−iQφ2)

over the aperture of the detector lens (NA2 = sinα2 = uα2) yields

0 =
∞∑

N=−∞

∞∑
n=0

FN,n,Q,q
[
AxN,nd

+
N,Q − iA

y
N,nd

−
N,Q

]
+ λ|Q|,qA

z
Q,q , (6.70)

where

FN,n,Q,q =

∫ uα2

0

u2√
1− u2

2

Φ|N |,n(u2)Φ|Q|,q(u2)u2du2 (6.71)

and

d±N,Q =
δN,Q+1 ± δN,Q−1

2
. (6.72)

Upon a suitable lexicographical ordering of the mode indices, Eq. (6.70) can be

written in matrix form which reads

0 =
(

F+ F− L
)

Ax

Ay

Az

 = GAA , (6.73)

where F± = [FN,n,Q,q d
±
N,q], L = diag[λ|Q|,q] and Aj = [AjN,n]. This is precisely of the

form discussed in Section 3.4 and can hence be used to form a CMLE.

Constrained maximum likelihood estimation of the expansion coefficients A is

however a nonlinear estimation problem, since they must be inferred from intensity

measurements. For example, consider a type I scanning microscope, where at each

scan point in the image plane a polarimetric measurement is made, using a point

detector. Using the eigenfunction expansion, the field at a scan point ρk, assuming
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a coherent system, can be written as a matrix equation viz.

E(ρk) =
∞∑

N=−∞

∞∑
n=0

BN,nΦ|N |,n

(
uα2ρk
ρmax

)
exp (iNϕk) , (6.74)

= P(ρk) B , (6.75)

= P(ρk) H A . (6.76)

Here H is a system matrix describing the scaling of coefficients, B, in the detector

plane to the Gaussian reference sphere, A, as defined by Eq. (6.20) and the elements

of P(ρk) give the value of the basis functions Φ|N |,n (uα2ρk/ρmax) exp (iNϕk) at each

scan point. A polarimetric detection will hence produce a vector of intensity readings

given by

D(ρk) = T A vec
[
E(ρk)⊗ E(ρk)

†]+ n , (6.77)

= T A (P(ρk)
∗ ⊗ P(ρk))(H∗ ⊗H)(A∗ ⊗A) + n , (6.78)

where T is the instrument matrix of the polarimeter, A is given by Eq. (4.28) and the

identities vec[XYZ] = (ZT⊗X)vec[Y] and WX⊗YZ = (W⊗Y)(X⊗Z) have been used

[30]. n is a noise vector. Eq. (6.78) furthermore identifies a suitable transformation

of the problem, from a nonlinear estimation of A to a linear estimation of A∗ ⊗A,

which is much simpler to analyse and has been discussed more fully in Chapter 3.

Since in general the expansion coefficients are complex, then so too are the ele-

ments of the parameter vector A∗ ⊗A. As discussed in Section 3.2 the parameter

vector of interest hence becomes w = (A∗ ⊗A,A ⊗A∗). It is noted that given a

noise free w, it is theoretically possible to deduce all coefficients A up to a physically

irrelevant global phase. The presence of noise again requires some means of statis-

tical estimation, however due to the invariance properties of MLEs, this presents no

further complications.

With this reparameterisation of the estimation problem, the constraints ex-

pressed by Eq. (6.73) must also be reformulated viz.

(G∗AA∗)⊗ (GAA) = (G∗A ⊗GA)(A∗ ⊗A) = 0⊗ 0 , (6.79)
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where the identity WX⊗YZ = (W⊗Y)(X⊗Z) has again been employed, such that

Gww =

 G∗A ⊗GA O

O GA ⊗G∗A

w = 0 . (6.80)

Using the preceding formulae the FIM for estimation of w was calculated in a

Gaussian noise regime, assuming noise covariance K = σ2I. For computational rea-

sons the maximum mode indices were restricted to n0 = N0 = 3, equating to 63 ex-

pansion modes or equivalently 14,112 elements of w14. Furthermore, the lenses were

assumed to have numerical apertures of 0.95 and 0.0095 respectively equating to a

magnification of 100, c was taken to be 10 such that the scan area covered a circular

domain with radius of approximately 2.6 Airy units (i.e. ρmax ≈ 1.59λ/NA2), with

scan points being separated by 10 µm. From the calculated FIM and the constraint

matrix Gw the matrices J−1 and B (see Eq. (3.42)) were calculated, representing the

CRLB and CCRLB respectively. The trace of these two matrices provide an aggre-

gate measure of the informational limits in the system, in a similar fashion to the

Fisher capacity, and are shown as a function of the noise variance σ2 in Figure 6.15.

A logarithmic informational loss as the SNR increases is clearly identifiable, as would

be expected, however the principle point of interest is that constrained estimation

exhibits a significant potential for improvement over unconstrained estimation, with

over two orders of magnitude improvement seen.

6.6 Conclusions

This chapter has considered two alternative approaches to analysing and enhancing

the performance of polarisation based imaging systems. Firstly, a new expansion

of the electric fields in the focal region of a high NA system in terms of Bessel and

generalised circular prolate spheroidal functions was developed. Physically, the gen-

eralised prolate spheroidal functions have also been shown to be the eigenfunctions

of the focusing operation and hence an inversion formula was also derived and given.

This formulation allowed superresolution in imaging systems to be considered from

an inverse problem standpoint. The reported method unfortunately proved unsuit-

14The main computational restriction lies in the inversion of the associated 14, 112×14, 112 FIM.
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Figure 6.15: Log-log plot showing the variation of tr[J−1] and tr[B], which provide an
aggregate quantification of the CRLB (blue) and CCRLB (dashed green), with SNR for
estimation of 63 generalised prolate spheroidal mode coefficients in the back focal plane
of a vectorial imaging system (see text). Units on each axis are arbitrary and scale with
the total number of photons present in the system.

able for obtaining this goal however, since although it is theoretically possible to

generate an arbitrary distribution in one or two field components, Maxwell’s equa-

tions dictate this is at the cost of dominant features arising in the unconstrained

components.

Synthesis of arbitrary focused fields is however of importance in a number of al-

ternative problems and a number of further inversion examples were presented. The

eigenfunction expansion was also demonstrated to possess a number of desirable

and physical properties, including maximal energy packing, separability of its com-

ponent functions in cylindrical coordinates, and fast convergence in the azimuthal,

radial and axial directions. Although it is not impossible to solve for a general

plane in the focal region, a restriction to the focal plane does greatly simplify the

calculations. A number of further caveats to the use of the inversion formula have

also been presented, including consideration of the degrees of freedom present in the

system which restricts how fully the focal distribution can be specified to maintain
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physicality.

Perhaps the most important result to come from the eigenfunction representation

stems from the considerations of the energy contained within the field specification

area. By considering the meaning of the prolate functions, a means to construct

“reasonable” focal distributions becomes apparent. In the sense of energy distribu-

tion, an optimum field can be constructed by using only the prolate functions with

large eigenvalues as a basis in the focal plane. This also produces better inversion

results due to reduced noise amplification.

Although much focus has been placed on “exact” inversion, the developed formu-

lae are also highly suitable for numerical optimisation, for which there already exists

a vast range of tools and knowledge. Such suitability arises since only relatively few

orders are required for reasonably accurate results and hence the number of optimi-

sation parameters i.e. expansion coefficients, is also small. This is especially true

for synthesis of axial or circularly symmetric transverse distributions since in this

case only the N = 0 modes have non-zero coefficients.

Due to the difficulty in obtaining high fidelity between an image and the ob-

ject under study, a second, Fisher information based, approach was also developed,

which quite naturally highlights the greater potential in imaging as opposed to wide

area integrated measurements. In this vein the performance of a simple polarisa-

tion microscope imaging a single electric dipole was considered and a number of

polarisation measurement architectures evaluated. Whilst it was found that when

attempting to determine the orientation of a single dipole a background free, crossed

polariser configuration performs optimally, informational losses at particular (al-

though highly predictable) orientations were seen to occur when additional noise

sources are introduced. Information losses of this nature were also seen in more

complex architectures.

Introduction of a second, extraneous dipole in the object plane, can, if incoher-

ently radiating with respect to the first, act as such a background source, thus having

a detrimental effect on the measurement process. Although similar effects can be

seen for a second coherently radiating dipole, the extent of performance degrada-

tion becomes dependent on the relative configuration of the two dipoles producing

a more complex behaviour. In essence however, all informational losses are seen
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to occur when inference is based on null readings, which are highly susceptible to

any additional perturbations. Perhaps by way of extolling the virtues and power

of imaging systems, if scanning measurements are taken and estimation based on

the subsequent image formed, a reduction in the complexity of the dipole crosstalk

attributes is seen, partly due to the averaging introduced in such measurements, but

also due to the greater redundancy introduced.

Image reconstruction or parameter estimation from electromagnetic imaging

measurements, is however subject to Maxwell’s equations; a factor which is com-

monly overlooked in reconstruction algorithms. As such consideration was finally

given to the potential improvements achievable were such constraints introduced into

the associated algorithms. Although computational expensive, significant possible

gains were demonstrated by comparison of metrics derived from the CRLB and the

CCRLB. Further avenues of research however still lie open in this vein, not only in

the design and practical implementation of suitable routines, but also in imposition

of further constraints and a priori knowledge.
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Chapter 7

Multiplexed Optical Data Storage

(MODS)

Not all bits have equal value.

Carl E. Sagan

Compact discs (CDs), offering a total of 640 MB of storage, revolutionised the

information storage industry when first introduced in 1982. The CD has since prolif-

erated worldwide and become a cornerstone of optical data storage (ODS). Although

still widely used, the storage capacity of CDs proved insufficient for a number of con-

sumer needs. Growing storage demands have hence driven the industry to develop

the digital versatile disc (DVD) in 1995 and, more recently, the high density DVD

(HD-DVD) and Blu-ray disc (BD) in 2006 (see [113] for fuller details). Whilst al-

ternative storage media exist capable of meeting market demands, such as magnetic

drives or solid state random access memory (RAM), ODS systems and media are

inexpensive to produce and master (∼ £0.05 for a DVD disc) and therefore continue

to be of major significance.

Advances in ODS technology have been realised by successive increases in the

NA of the illumination optics (0.45, 0.6, and 0.85 for CD, DVD and BD respectively)

and decreases in the wavelength of light employed (780, 650 and 405 nm for CD,
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DVD and BD respectively)1 so as to reduce the size of the diffraction limited focal

spot on the disc. Decreasing the size of the focal spot in turn allows data pits to

be reduced in size with a resulting increase in information density and hence total

capacity of an optical disc.

Potential improvements in ODS via NA increase and wavelength reduction are,

however, now reaching their limits. Use of shorter wavelengths is currently unfeasible

since common optical media used in lenses, such as BK7, exhibit poor transmission

at wavelengths below approximately 330 nm. Further increases in NA are also prob-

lematic since the maximum NA achievable for a lens in air is unity. Achieving larger

NAs requires use of immersion lenses, which couple evanescent waves scattered from

a data pit into the readout optics, hence circumventing the diffraction limit [176].

Some success has already been achieved using a solid immersion lens (SIL), for ex-

ample a 50 GB storage capacity has been demonstrated under laboratory conditions

[328], however use of immersion lenses still poses significant engineering problems.

Difficulties arise, for instance, since a SIL based system requires maintaining an air

gap of a few tens of nanometers between the SIL and the disc surface, whilst the

disc rotates at high speed. Robustness of SIL systems outside the laboratory must

thus first be improved before commercial exploitation is possible.

For improvements beyond those achievable using immersion lenses, recourse must

be made to alternative strategies, such as multiplexing in which a single pit can store

more than a single bit of information. Accordingly a research consortium was tasked

in 2001 with identifying the most viable multiplexing technique, including evaluation

of techniques based on amplitude, phase and orbital angular momentum encoding

[271]. Key to the findings of this consortium was the conclusion that polarisation

multiplexing presented the most viable approach.

Utilising the polarisation state of light to multiplex information on an optical

disc requires the creation of scattering structures with a form birefringence. Form

birefringence typically arises from an asymmetry in a structure. Rectangular pits

were, for example, considered in [173] whilst rod-like particles were considered in

[37, 236], which have all demonstrated a dependence of the scattered field on the

incident polarisation. Numerical simulations have furthermore demonstrated the

1Improved encoding algorithms have also led to increased data capacities, but these however
fall outside the remit of this thesis and will not be considered.
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importance of the polarisation of the illuminating field [27, 28, 109, 145, 163, 179] in

determining the readout properties of an ODS system using a variety of scattering

structures, including grooves, pits and bumps. None have, however, considered the

exploitation of polarisation as an information carrying channel.

Within this context this chapter considers a simplified electromagnetic model of

light scattering. In particular the rectangular pits proposed in [173] and shown in

Figure 7.1(a) are considered since the experimental results presented therein have

shown a potential sevenfold increase in data capacity over existing BD technology

and thus hold significant promise. The scattering model is set up with the aim of
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Figure 7.1: (a) Scanning electron microscope image of elongated data pits as proposed
for a polarisation multiplexed optical data storage system. Pits measure 200 nm× 50 nm.
(b) Simple schematic of a data pit on the surface of an optical disc. (c) Geometry of mode
matching calculations at the surface of a MODS disc.
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determining the key principles by which a polarisation multiplexed system (hence-

forth referred to simply as a MODS system) operates and how such principles can

be fully utilised. As such the scattering calculations are finally used as a basis for

numerical optimisation of the geometry of the scattering structure.

7.1 Electromagnetic scattering calculations

Modelling and characterisation of the proposed MODS system is imperative for

successful implementation. As the need for storage capabilities has increased the

size of the associated data pits has decreased to sub-wavelength dimensions requiring

more sophisticated models to obtain accurate results. Predominantly these models

employ rigorous coupled wave theory [192, 193], the finite difference time domain

(FDTD) method [162], the finite element method (FEM) [45, 305] and the boundary

integral method (BIM) which all derive from Maxwell’s equations.

Rigorous modelling techniques, such as these, however require significant compu-

tational resources for a single calculation and are thus ill-suited for the optimisation

calculations to be performed in Section 7.3. Instead a modal method in which the

field in different regions of space are decomposed into a basis of electromagnetic field

distributions, or modes, which satisfy Maxwell’s equations is used. Modal methods

have been proposed for various diffraction and scattering problems, for example

[26, 27, 153, 235], since they are numerically more tractable than exact techniques,

such as FDTD, and because they reduce the full 3D problem to a 2D equivalent. The

mode expansion presented here closely follows that presented in [26]. Furthermore,

simulation results shown were calculated using code kindly provided by J. Brok.

7.1.1 System description

Before numerical simulations can be undertaken it is first necessary to specify the

geometry of the scattering problem. Data pits on optical discs are commonly formed

on a polycarbonate substrate, with an aluminium coating with profile as shown in

Figure 7.1(b). A protective polycarbonate coating is then applied. Simulations

presented in this chapter, however adopt a simplified model of a single MODS data

pit. Specifically a 2a × 2b rectangular pit opening is used, whilst the sides of the
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pit are assumed to be perpendicular to the disc surface and to extend to a depth

of D. The aluminium layer is modelled as a perfect conductor and the plane of

the disc surface is considered to lie perpendicular to the optical axis at the focal

plane of a high numerical aperture lens. Although the protective polycarbonate

layer is also neglected for simplicity, this could potentially be incorporated into

the system by using the focusing formalism described in [282]. With a view to

backward compatibility with BD technology, a wavelength of λ = 405 nm is used in

all simulations.

7.1.2 Mode expansion theory

The mode expansion detailed in [26, 27] distinguishes between two regions in space,

namely the region above the disc interface (designated region 1) and the region

within the pit volume (region 2), as shown in Figure 7.1(c). Regions 1 and 2 are

assumed to both possess a refractive index of unity (hence ε1 = ε2 = ε0) and to

be non-magnetic (µ1 = µ2 = µ0). Consideration need not be given to the field

within the conducting material of the disc surface, since the assumption of perfect

conductivity automatically ensures the fields are identically zero.

In region 1 three components of the total field, E1(r = x, y, z), can be identified:

the incident illumination field, Eill(r); the field reflected from the surface of the

disc if the pit were not present, Eref(r); and finally the difference field arising from

scattering from the data pit, Esca(r). Hence

E1(r) = Eill(r) + Eref(r) + Esca(r) (7.1)

and similarly for the magnetic field

H1(r) = Hill(r) + Href(r) + Hsca(r) . (7.2)

Within region 2 there will exist a transmitted electric field Etra(r) and an asso-

ciated transmitted magnetic field Htra(r), which will itself be composed of forward

travelling and backward travelling components2 arising from reflections from the

2Evanescent modes that may exist in the pit volume, although not strictly propagating, will be
composed of waves which decay in the positive and negative z direction hence allowing analogous
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back surface of the pit3.

As dictated by the appropriate boundary conditions in each region the various

contributions to the total field are expressed as a superposition of basis functions,

which themselves form a complete4 orthogonal set. These expansions are more fully

introduced in the next two sections.

7.1.2.1 Mode expansion above the interface

Considering first the field decomposition above the disc surface, it is noted that

propagating (and evanescent) plane waves of the form E = E0 exp(±ik · r) satisfy

Maxwell’s equations. An angular spectrum representation of the field, as discussed

in Sections 4.2.2 and 4.5, is thus suitable such that

Eη(r) =

∫ ∞
−∞

∫ ∞
−∞

Eη
0(k) exp(±ik · r)dkxdky , (7.3)

where the superscript η = ill, ref, sca denotes the illumination, reflected and scat-

tered field components respectively. The appropriate choice of sign in the exponent

is dependent on η. The illuminating field must, by definition, be formed from only

forward propagating waves (i.e. the positive sign adopted), whilst the specularly

reflected field is therefore automatically described by outward propagating plane

waves (a negative exponent). Sommerfeld’s radiation condition, which states that

no energy can be radiated from infinity, (or conversely that energy scattered from

an object must be radiated to infinity) [262], then finally implies that the scattered

field is comprised of outward propagating waves only, that is the negative exponent

is again adopted.

There are however two modifications to this integral which will prove useful in

later calculations. Firstly, by taking heed of the geometry of the scattering problem

for which the mode expansion will be ultimately used, it proves advantageous to

decompose a single plane wave into its s and p polarised components5, defined re-

arguments to be applied.
3Possible reflections from the sides of the pit are neglected for simplicity.
4Complete in the sense that an arbitrary field satisfying Maxwell’s equations and the bound-

ary conditions can be represented as an appropriate superposition of the modes. This does not
necessarily imply completeness in the strict mathematical sense.

5Given an arbitrary field vector it is possible to calculate the s and p components using the
rotation matrix introduced in Section 4.3.
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spectively as the field for which the electric field vector lies perpendicular and parallel

to the plane containing the corresponding ray and the optical axis. Equivalently,

s and p polarised plane waves can be defined as those having a zero longitudinal

electric and magnetic field component respectively.

Secondly, under the assumption that the focal length of the illuminating and

collecting lens in the disc illumination and readout system is large in comparison to

the wavelength of the light used, any evanescent waves that may arise in region 1

can be neglected as their amplitude will be heavily attenuated giving a null signal

on the readout detector. Hence it is possible to restrict the domain of integration of

Eq. (7.3) to consider only propagating plane waves. If a SIL system were being used

this assumption would have to be discarded and the evanescent wave coupling also

considered. Furthermore, the finite numerical aperture of the focusing (and collec-

tor) lens implies that only a finite angular range of rays are collected. Specifically

only rays for which k2
x + k2

y ≤ k2NA2 are present in the illuminating (and hence also

the specularly reflected) beam, where NA is the numerical aperture of the focusing

lens (see Section 4.5), hence allowing the integration domain to be further limited.

Although plane waves propagating at large angles to the optical axis may exist in

the scattered field, the collector lens (assumed to be the same as the focusing lens)

will also not collect such components, implying their contribution to the readout

signal can be safely ignored.

With these considerations in mind Eq. (7.3) becomes

Eη(r) =
∑
ν=s,p

∫∫
k2
x+k2

y≤k2NA2

aη,ν(k)Eν(k) dkxdky , (7.4)

where ν denotes the s and p polarised components (see Appendix B),

Es(k) =



ωµ

2π
√
k2
x + k2

y


ky

−kx
0

 for k2
x + k2

y > 0 ,

ωµ

2π


0

−1

0

 for k2
x + k2

y = 0 ,

(7.5)
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Ep(k) =



kz

2π
√
k2
x + k2

y

√
µ

ε


kx

ky

−(k2
x + k2

y)/kz

 for k2
x + k2

y > 0 ,

k

2π

√
µ

ε


1

0

0

 for k2
x + k2

y = 0 .

(7.6)

and aη,ν(k) denotes the various scalar angular spectra.

7.1.2.2 Mode expansion below the interface

When considering the physically supported field distributions in region 2, Maxwell’s

equations must be solved allowing for the presence of the perfectly conducting mate-

rial bounding the region. Analytic solutions exist, which shall henceforth be referred

to as waveguide modes, a derivation of which is given in Appendix B. Here, however

only the final form of the modes are given for ease of reference.

Waveguide modes, in a manner similar to that discussed for plane waves, can be

categorised as either transverse electric (TE) or transverse magnetic (TM) for which

ETE
z (r) = 0 and HTM

z (r) = 0, for all r respectively. In particular, for a pit oriented

as shown in Figure 7.1(b), the TM modes are of the form

ETM
xmn(r) =

2iκz
k2 − κ2

z

sin[κz(z −D)]
∂

∂x
XTM
m (x)Y TM

n (y) , (7.7a)

ETM
ymn(r) =

2iκz
k2 − κ2

z

sin[κz(z −D)]XTM
m (x)

∂

∂y
Y TM
n (y) , (7.7b)

HTM
xmn(r) =

−2iεω

k2 − κ2
z

cos[κz(z −D)]XTM
m (x)

∂

∂y
Y TM
n (y) , (7.7c)

HTM
ymn(r) =

2iεω

k2 − κ2
z

cos[κz(z −D)]
∂

∂x
XTM
m (x)Y TM

n (y) , (7.7d)

ETM
zmn(r) = 2 cos[κz(z −D)]XTM

m (x)Y TM
n (y) , (7.7e)

for −a ≤ x ≤ a, −b ≤ y ≤ b, 0 ≤ z ≤ D, whilst the equivalent expressions for TE
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modes are

ETE
xmn(r) =

−2iµω

k2 − κ2
z

sin[κz(z −D)]XTE
m (x)

∂

∂y
Y TE
n (y) , (7.8a)

ETE
ymn(r) =

2iµω

k2 − κ2
z

sin[κz(z −D)]
∂

∂x
XTE
m (x)Y TE

n (y) , (7.8b)

HTE
xmn(r) =

2iκz
k2 − κ2

z

cos[κz(z −D)]
∂

∂x
XTE
m (x)Y TE

n (y) , (7.8c)

HTE
ymn(r) =

2iκz
k2 − κ2

z

cos[κz(z −D)]XTE
m (x)

∂

∂y
Y TE
n (y) , (7.8d)

HTE
zmn(r) = 2 sin[κz(z −D)]XTE

m (x)Y TE
n (y) , (7.8e)

where

Xµ
m(x) = [1± (−1)m] i sin(κxx) + [1∓ (−1)m] cos(κxx) , (7.9)

Y µ
n (y) = [1± (−1)n] i sin(κyy) + [1∓ (−1)n] cos(κyy) , (7.10)

for µ = TM and TE modes respectively, (κx, κy) = (mπ/2a, nπ/2b) for integer

m and n, and κz =
√
k2 − κ2

x − κ2
y. A general field in region 2 can therefore be

represented as an expansion of waveguide modes, viz.

E(r) =
∑
µ

∑
m,n

bµmnE
µ
mn(r) , (7.11a)

H(r) =
∑
µ

∑
m,n

bµmnH
µ
mn(r) . (7.11b)

The lowest TE mode which does not give a zero field is the (m,n) = (0, 1) or (1, 0)

mode (denoted TE01 or TE10), whilst the lowest non-zero TM mode is the (1, 1)

mode.

The form of these waveguide modes differ slightly from those given in [26] due to

a shift in the origin of the coordinate system to the center of the data pit. This shift

has been introduced because it is more consistent with the coordinate system used

in the Debye-Wolf integral (Eq. (4.46)) used to calculate the focused field incident

upon the data pit. It should be noted that Eqs. (7.7) and (7.8) are only valid in

region 2, but are however also valid for data pits whose long axis is not parallel to

the x-axis, if considered in a coordinate system rotated in the same manner as the
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pit.

It is insightful to briefly consider the nature of the waveguide modes for waveg-

uides of sub-wavelength dimensions. Solutions to the wave equation are assumed to

have the form X(x)Y (y) exp(±iκzz) (see Appendix B), where κz is the propagation

constant for a particular mode. Propagating modes therefore correspond to real κz,

whilst evanescent modes correspond to imaginary κz, i.e.

κ2
z ≥ 0⇐⇒ k2 ≥ κ2

x + κ2
y ⇐⇒ propagating modes ,

κ2
z < 0⇐⇒ k2 < κ2

x + κ2
y ⇐⇒ evanescent modes .

If κz = 0 the mode is said to be at cutoff. Recalling that for monochromatic light

κ2
z = k2 −

(mπ
2a

)2

−
(nπ

2b

)2

, (7.12)

higher order modes (i.e. larger m and n) correspond to smaller propagation con-

stants, however if the pit dimensions are small enough even the lowest order mode

(either TE01 or TE10 if a < b or a > b respectively) will be evanescent. Formally it

can be shown from Eq. (7.12), that if the largest dimension of the waveguide is less

than half a wavelength (in the core medium) all waveguide modes will be evanescent

in nature. Adopting the values a = 100 nm and b = 25 nm as used in [173] it is

evident that these conditions are fulfilled for the proposed MODS data pit, a fact

that will be seen to have particular consequences for designing the pit geometry as

discussed in Section 7.3.

7.1.2.3 Mode matching at the interface

Having explicitly given mode expansions for the fields above the disc surface and

within the data pit, it is now necessary to consider the coupling of the modes between

the two regions. Again Maxwell’s equations and the resulting boundary conditions

provide a means to investigate this.
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At the boundary between the two regions the fields must match meaning

Etra(x, y, 0) = Eill(x, y, 0) + Eref(x, y, 0) + Esca(x, y, 0) , (7.13a)

Htra(x, y, 0) = Hill(x, y, 0) + Href(x, y, 0) + Hsca(x, y, 0) . (7.13b)

The reflected field Eref is, however, defined as that present in the absence of a data

pit, i.e. for reflection from a perfect planar conductor. Applying the boundary

conditions for a perfect conductor (c.f. Eqs. (B.25) and (B.26)) then gives

Eill
‖ (x, y, 0) + Eref

‖ (x, y, 0) = 0 , (7.14)

where ‖ denotes the field components that are tangential to the conductor surface.

The boundary conditions for the data pit mode matching problem can thus be

written

Etra
‖ (x, y, 0) = Esca

‖ (x, y, 0) , (7.15a)

Htra
‖ (x, y, 0) = Hill

‖ (x, y, 0) + Href
‖ (x, y, 0) + Hsca

‖ (x, y, 0) . (7.15b)

For a given illumination, the fields Hill
‖ (x, y, 0) and Href

‖ (x, y, 0) can be calculated

and are thus assumed known. Eqs. (7.15) represent two vector equations, with two

sets of unknowns, namely the angular spectrum asca,ν and the expansion coefficients

bµmn. To solve this system of simultaneous equations the orthogonality properties of

plane waves can be used as follows.

Consider first forming the inner product of Eq. (7.15a) with an arbitrary plane

wave, viz.

〈Eν′

‖ (k′),Esca
‖ 〉 − 〈Eν′

‖ (k′),Etra
‖ 〉 = 0 , (7.16)

where the functional dependence of field quantities on the interface coordinates has

been dropped for clarity. Substituting the appropriate mode representations then

yields

∑
ν=s,p

∫∫
∞
asca,ν(k) 〈Eν′

‖ (k′),Eν
‖(k)〉 dkxdky,−

∑
µ

∑
m,n

bµmn〈Eν′

‖ (k′),Eµ
‖mn〉 = 0 ,
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where the integration is taken over an infinite domain. From Eqs. (B.24) the angular

spectra for the s and p polarised plane waves follow as

asca,ν(k) =

[(
2π

ωµ

)2

δν,s +
ε

µ

(
2π

|kz|

)2

δν,p

]∑
µ

∑
m,n

bµmn〈Eν′

‖ (k),Eµ
‖mn〉 . (7.17)

Evaluation of Eq. (7.17) however requires knowledge of the waveguide mode expan-

sion coefficients bµmn. These coefficients can by found by taking the inner product

of Eq. (7.15b) with an arbitrary waveguide mode. Upon further substitution of

the appropriate mode representations, in conjunction with Eq. (7.17), the matrix

equation

A b = c (7.18)

results (assuming a suitable lexicographic ordering of the mode indices), where

A =

[
〈Hµ′

‖pq,H
µ
‖mn〉 −

4π2

ω2µ2

∫∫
∞
〈Es
‖(k),Eµ

‖mn〉 〈H
µ′

‖pq,H
s(k)〉 dkxdky

− 4π2ε

µ

∫∫
∞
〈Ep
‖(k),Eµ

‖mn〉 〈H
µ′

‖pq,H
p(k)〉 dkxdky

|kz|2

]
, (7.19)

b = [bµmn] and c = [〈Hµ′

‖pq,H
ill
‖ + Href

‖ 〉]. The domain of integration of the inner

products of Eq. (7.19) is restricted to the aperture of the data pit since the waveguide

modes are zero outside of this domain. Analytic expressions can hence be derived

as given in Appendix B.

Inversion of Eq. (7.18) allows the waveguide mode coefficients to be extracted and

hence the angular spectrum of the scattered light to be calculated. Characteristic

to the modal method presented is that the interaction matrix, A, need only be

calculated once for a single pit configuration. Furthermore A is independent of pit

depth. Importantly, this means the depth can be freely changed without requiring

further major computational efforts, which is of use in terms of the optimisation

of Section 7.3. Alternatively the illumination can be varied, as is beneficial for

calculation of the polarisation properties as discussed in the next section.
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7.2 Optical disc readout - numerical results

Evaluation of Eqs. (7.17) and (7.18) allows both the field within the data pit and the

scattered field to be found. Numerical calculations were conducted in this regard

based on the prototype sample described in Section 7.1.1, assuming the pit dimen-

sions of [173], i.e. a = 100 nm, b = 25 nm and D = λ/4. The results are presented

here. Furthermore, propagation of the scattered field through both conventional

and confocal readout systems (see Chapter 6) is performed to compare two possible

detection architectures. The polarisation characteristics of the readout signal are

also presented.

7.2.1 Field distributions within the data pit

Figure 7.2 shows the individual Cartesian electric field components and optical in-

tensity within the data pit volume, for a pit illuminated by a uniform horizontally

(x) polarised beam focused by a lens with NA = 0.95 and focal length of 3.5 mm.

Waveguide mode expansions were truncated at m = n = 30. Similarly, Figure 7.3

shows the same distributions for a vertically (y) polarised illumination beam.

Coupling strength of the incident light into the pit is dictated by the inner

products 〈Eν
‖(k),Eµ

‖mn〉 and 〈Hµ
‖mn,H

p(k)〉, analytic expressions for which are given

in Section B.3.5 (see also [26]). Symmetry inherent in these integrals dictate that a

normally incident p polarised plane wave (for normal incidence this corresponds to

horizontal polarisation) can only couple to TE modes with m = 0 and odd n, whilst

conversely an s polarised wave (vertically polarised) only excites TE modes with

odd m and n = 0 [27]. An obliquely incident p (s) polarised plane wave does not

suffer this restriction and can couple into arbitrary waveguide modes, however the

coupling is weaker for m 6= 0 and even n (odd m and n 6= 0) orders. Interestingly

it is hence expected that y polarised illumination couples more strongly into an

x-oriented data pit, in agreement with numerical findings.

Evanescent modes however suffer an exponential decay in amplitude with depth6

which scales as |κz|−1. Greater penetration depth hence occurs if the incident light

6Due to the backward decaying component arising from reflection off the bottom of the pit the
field amplitude, in actuality, decays as cosh[|κz|(z −D)] for 0 ≤ z ≤ D.
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Figure 7.2: Distributions showing the absolute magnitude of the Cartesian electric
field components (Etra

x , Etra
y , Etra

z ) (a)-(c) and corresponding optical intensity (d) within a
200 nm × 50 nm × λ/4 MODS data pit, illuminated with x polarised light of wavelength
405 nm focused by a lens of numerical aperture of 0.95. Maximum waveguide mode indices
of m = n = 30 were used in calculations. Magnitude scales are in arbitrary units.

couples more strongly into modes with a smaller propagation constant; specifically

the n = 0 TE modes (since the lowest TM mode is TM11) as shown Table 7.1.

Theory, therefore predicts that a y polarised field, coupling predominantly into the

TE10 mode, produces a larger field amplitude at greater depths in the pit than for a

x polarised illumination, which chiefly excites the TE01 mode. This feature is clearly

apparent in Figures 7.2 and 7.3.

7.2.2 Properties of the scattered field

Having determined the waveguide expansion coefficients the angular spectrum of the

scattered light follows, from which either the near or far field can be calculated. The

former is more pertinent for readout systems employing a SIL, however the latter
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Figure 7.3: Distributions showing the absolute magnitude of the Cartesian electric
field components (Etra

x , Etra
y , Etra

z ) (a)-(c) and corresponding optical intensity (d) within a
200 nm × 50 nm × λ/4 MODS data pit, illuminated with y polarised light of wavelength
405 nm focused by a lens of numerical aperture of 0.95. Maximum waveguide mode indices
of m = n = 30 were used in calculations. Magnitude scales are in arbitrary units but are
comparable to Figure 7.2.

m = 0 m = 1 m = 2 m = 3

n = 0 - 0.16 i 1.76 i 2.87 i

n = 1 3.92 i 4.05 i 4.42 i 4.96 i

n = 2 8.04 i 8.10 i 8.29 i 8.59 i

n = 3 12.11 i 12.15 i 12.28 i 12.48 i

Table 7.1: Propagation constants, in units of k = 2π/λ, for low order field modes in a
rectangular waveguide of dimensions 200 nm× 50 nm.

is appropriate for considering more traditional readout optics that exist in, say, a

DVD or BD system. Attention is hence restricted to the far field in the following

sections. Nevertheless it is worthwhile noting that due to the sub-wavelength size
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of the MODS pit structures, strong evanescent fields are introduced in the scattered

near field suggesting a SIL readout system could present further opportunities.

To describe the potential dependence of the scattered field on the polarisation of

the illumination, first recall that each point (θ′, φ′) in the entrance pupil represents

an incoming plane wave of strength Ẽin. Each incident plane wave gives rise to a

spectrum of scattered plane waves, such that the resulting field, Ẽout(θ, φ) in the

exit pupil is given by

Ẽout(θ, φ) =

∫∫
Θ

T̃(θ, φ, θ′, φ′)Ẽin(θ′, φ′) dS ′ , (7.20)

where Θ denotes the domain of the entrance pupil and T̃(θ, φ, θ′, φ′) describes the

scattering of each incident plane wave component. Assuming a homogeneously po-

larised illumination, a Jones pupil can be defined by
∫∫

Θ
T̃(θ, φ, θ′, φ′)dS ′. Using the

scattering model presented it is possible to calculate the Jones pupil by calculating

the field distribution in the back focal plane of the readout lens for x and y polarised

illumination separately. As such, the Jones pupil, considering the scattered field,

Esca, solely is shown in Figure 7.4, where the insets also show the Jones pupil when

considering the total outward propagating field, Eref + Esca. Whilst strong preferen-

tial transmission is seen for incident y polarised light in the scattered field, due to

the relative amplitude of the reflected field this diattenuation is greatly diminished

in the total outward field.

Quantification of the diattenuation present however in general depends on the

mode of operation of the readout system. A confocal detection scheme, for exam-

ple, refocuses the field distribution in the pupil on to a point detector, whilst a

conventional configuration uses a spatially infinite detector. As such the measured

intensity is given by

Dconf =

∣∣∣∣T [∫∫
Θ

∫∫
Θ

T̃(θ, φ, θ′, φ′) dSdS ′
]

Ein

∣∣∣∣2 (7.21)

Dconv =

∫∫
Θ

∣∣∣∣T [∫∫
Θ

T̃(θ, φ, θ′, φ′) dS ′
]

Ein

∣∣∣∣2 dS (7.22)

where the additional Jones matrix, T, has been introduced to allow for polarimetric

measurements (it should be emphasised that T is not the instrument matrix in this
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Figure 7.4: Jones pupil describing the pointwise change in polarisation for the light
scattered from the MODS data pit of Figures 7.2 and 7.3, when illuminated by a fo-
cused homogeneously polarised beam. Insets show the Jones pupil for the total outward
propagating field. Normalisation is such that the Jones pupil is pointwise passive.

case but is instead the Jones matrix associated with one detection arm in the DOAP

used).

Since in the confocal case the measured intensities are dependent on the aver-

age field incident on the detector, a confocal polarimeter returns information about

the average of Jones pupil. Conventional measurements however record average

intensities, or Stokes vectors and hence provide information pertaining to the av-

erage of the Mueller pupil7. The latter can hence introduce depolarisation into a

measurement even when studying a non-depolarising sample. The Cauchy-Schwarz

inequality then implies that significant differences arise in the output signal for the

two different readout architectures when the Jones pupil is spatially inhomogeneous.

7The Mueller pupil is the Mueller calculus equivalent to T̃(θ, φ, θ′, φ′) as is more appropriate
for a depolarising system.
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Diattenuation Retardance Depolar-

Vector Norm Vector Norm isation

total (1,0,0) 4.3× 10−4 (-1,0,0) 0.0012 0
Confocal

scattered (-1,0,0) 0.9828 (-1,0,0) 0.2977 0

total (1,0,0) 4.3× 10−4 (-1,0,0) 0.0012 ∼ 0
Conventional

scattered (-1,0,0) 0.9833 (-1,0,0) 0.2973 0.0866

Table 7.2: Polarimetric parameters as found using a Lu-Chipman decomposition of the
simulated readout Mueller matrix.

Figure 7.4 however demonstrates this is not the case in the MODS example and lit-

tle difference is to be expected. Such an expectation is born out upon quantitative

analysis, by means of a polar decomposition [169], whereby the parameters shown

in Table 7.2 are found. Values for diattenuation, retardance and depolarisation are

given for the scattered field alone and the total outward propagating field to high-

light the suppression of diattenuation in the latter case. Since little difference is

seen between conventional and confocal readout systems, a confocal system shall

henceforth be assumed so as to avoid the inherent depolarisation and to allow direct

comparison with the results of [173].

In light of the results shown in Figures 7.2–7.4 and Table 7.2 the origin of the

diattenuating properties of a MODS data pit can be deduced. An incident x po-

larised beam suffers only a weak perturbation from the presence of the pit giving

rise to a weak x (and y) field component in the scattered field. On the other hand

a y polarised beam couples relatively strongly into the pit and hence the scattered

beam has a strong y component (albeit still with a weak x component), hence giving

rise to a diattenuation vector of (−1, 0, 0) when the scattered field is considered in

isolation. Expressed simply this implies that Eill
x is responsible for any non-zero Esca

x

component and similarly for Eill
y and Esca

y .

Upon scattering, however, the transverse components of the scattered field ex-

perience different phase shifts (a heuristic description of this process is given in

Section 7.3). The properties of the total outward propagating field, as given by

the coherent superposition of the specularly reflected field and the scattered field
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are then dictated by these phase differences. Ultimately a larger phase difference

between Esca
y and Eref

y gives rise to a greater degree of destructive interference, than

in the respective x field components. A strong x component hence results, giving a

diattenuation vector of (1, 0, 0).

Recent experiments performed by Maćıas-Romero [173], to obtain the Mueller

pupil associated with readout of a collection of elongated data pits (see Figure 7.1(a)),

confirm that diattenuation is present in the readout signal, however to a much

greater extent than that predicted by the model presented here, with a diattenua-

tion of ∼ 0.4 being observed in the total field. Reasons for this discrepancy are likely

to arise from the assumptions made in the calculations. Suspicion particularly lies

with the assumption of a perfect conductor. The silicon substrate used in [173] is far

from a perfect conductor, a fact that will greatly affect the field distribution near the

pit and the mode coupling strengths. Furthermore, for silicon, with a reflectance of

∼ 0.4 at 405 nm [216] as compared to a reflectance of unity for a perfect conductor,

specular reflection is significantly smaller and hence an increase in diattenuation

would be expected. Although the propagation constants of waveguide modes far

from cutoff do not differ significantly when a perfectly conducting guide material

is assumed relative to a more realistic electrical conductivity [27], the dimensions

of the data pit modelled here result in the TE10 lying close to the cutoff (see Ta-

ble 7.1). The disparity in propagation constant in turn can be expected to give

rise to a different degree of phase retardation and hence also influence the observed

diattenuation.

7.3 Optimal pit geometry

Despite the numerical discrepancies between the presented model and experimental

results, qualitative results can still be extracted and insight gained into the physical

processes determining the form of the readout signal. In particular in this section

the geometry of the data pit will be optimised, with a view to maximising the

diattenuation present in the total field. By so doing, the region of polarisation

space spanned by the output field, for a fixed, linearly polarised illumination is

maximised and hence so too is the capacity of the MODS system (c.f. Eq. (5.11)).
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Optimisation of data pit geometry has previously been considered in the context

of detecting an intensity modulation in the readout signal of an ODS system, e.g.

[160, 263, 327], however the work presented here in the context of optimisation of

polarisation properties is new.

Considering first the effect of altering the depth of a single data pit, it is found

that diattenuation in the scattered component of the field increases rapidly from zero

to ∼ 1 over a short range of pit depths, with complete diattenuation approximately

seen for D > λ/5, as shown by the solid blue curve in Figure 7.5(a). Growth in

the total field however occurs over a longer range of depths (see Figure 7.5(b)), as

a consequence of the slow rate of increase of retardance (dashed green curve) of the

scattered field with pit depth.

A striking feature of the results of Figure 7.5(a) is the contrast with the behaviour

of larger pits. Whilst monotonic increases in both the retardance and diattenuation

are seen for data pits of transverse dimensions 200 nm × 50 nm, oscillatory varia-

tions with D are present for larger pits in which propagating waveguide modes can

exist [34, 179]. Figure 7.5(c), for example, shows the simulated diattenuation and

retardance for a 220 nm × 50 nm pit, for which the TE10 mode is a propagating

mode. Oscillatory behaviour of this nature can heuristically be understood by not-

ing that the phase accumulated by the propagating waveguide mode depends on the

distance travelled before reflection and hence on the depth of pit. Consequently the

interference between the specularly reflected field and that coupled back out of the

pit, can be either constructive or destructive in nature. Evanescent modes do not

propagate however, implying no phase is accrued and therefore no oscillatory be-

haviour is exhibited. Instead an analogy can be drawn with total internal reflection

and non-propagating waves in transmission lines. In these scenarios the reflection

coefficient for waves incident onto an interface has unit amplitude, but is in general

complex. Consequently a phase shift is introduced in the reflected beam, albeit a

non-oscillatory one.

To corroborate this interpretation a simple transmission line representation was

used to model coupling into and reflection from the pit boundary. A transmission

line approach is justifiable, since the surface charges and currents in the guide walls

introduce a distributed capacitance and inductance, as possessed by electrical trans-
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Figure 7.5: (a) Variation of diattenuation (blue solid) and retardance (green dashed)
seen in the output signal of a confocal MODS readout system, with pit depth, for a pit of
transverse dimensions 200 nm × 50 nm, when considering only the scattered component
of the field. Solid red line shows the retardance predicted using a simple transmission
line analogy (see text). (b) shows the same as in (a) including the specularly reflected
field. (c) gives the variation of diattenuation and retardance as (a) assuming a larger
pit of transverse dimensions 220 nm× 50 nm which hence possesses a single propagating
waveguide mode. (d) Variation of diattenuation and retardance seen in the output signal
of a confocal MODS readout system with transverse aspect ratio for a pit with a fixed
depth of λ/4.

mission lines. The reflection coefficient r between the interface of two transmission

lines with differing impedances, Z1 and Z2 is a standard result [57] and is thus simply

quoted here as

r =
Z2 − Z1

Z2 + Z1

. (7.23)

Within the context of the scattering problem discussed in this chapter, the first
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transmission line, representing region 1, will have impedance equal to that of free

space, i.e. Z1 = Z0 =
√
ε0/µ0. The impedance of region 2 however depends not

only on the type of modes present in the waveguide, but also the strength with

which they are present. In particular the characteristic wave impedance for a single

waveguide mode is given by [9]

ZTM
mn =

κz
ωε

, ZTE
mn =

ωµ

κz
. (7.24)

Eqs. (7.24) however only account for the presence of a single transmitted mode and

does not consider the reflected contribution from the back surface of the pit. Again

a standard result can be quoted, namely that the impedance of a transmission line

of length D, carrying a wave and its reflection due to termination of the line by a

load of impedance ZL, is

Ztot,µ
mn (D) = Zµ

mn

ZL + iZµ
mn tanκzD

Zµ
mn + iZL tanκzD

, (7.25)

which reduces to Ztot,µ
mn (D) = iZµ

mn tanκzD upon termination by a perfect conductor

(ZL = 0).

In general however multiple modes exist in the data pit and hence the equivalent

transmission line must be modelled by a set of impedances in parallel, such that

1

Z2

=
∑
µ

∑
m,n

bµmn
Ztot,µ
mn

. (7.26)

The retardance in the scattering problem can hence be estimated by calculating the

difference in phase of the reflection coefficient, r, for x and y polarised illumination,

and is represented by the solid red curve of Figure 7.5(a). Although exact corre-

spondence is not seen due to the oversimplification of the nature of the incident

wave, a phenomenological agreement is evident.

Finally, Figure 7.5(d) considers the variation of diattenuation and retardance

present in the scattered field, as the aspect ratio of the data pit is adjusted. For the

calculations b was held constant at a value of 30 nm, whilst a was varied from 30 nm,

giving a square pit, to 520 nm. Quite expectably, as the asymmetry is increased the

polarisation dependant behaviour increases with an aspect ratio of approximately
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1:4 exhibiting near complete diattenuation, well within manufacturable limits.

7.4 Conclusions

Optical data storage systems have shown great practical success, but are however

drawing close to their physical limits. A new multiplexed scheme has been presented

and modelled in this chapter, in which the polarisation state of light scattered from

differently oriented asymmetric pits, is used to represent multiple logical states.

The limited polarisation resolution of any practical polarimetric readout system

however limits the number of distinguishable states. Maximising the capacity of a

polarisation multiplexed system therefore entails maximising the domain of possible

scattered states for a fixed illumination. Optimisation of this nature however re-

quires a detailed knowledge of the polarisation dependant properties of the system

as a whole, hence necessitating a suitable scattering model to be constructed.

The large number of calculations inherent to optimisation motivated a modal

approach to the scattering problem, in which the fields above the disc surface and

within the data pit volume were decomposed into a physically complete set of in-

dexed solutions to Maxwell’s equations. Scattering calculations were thus reduced

to calculation of a single interaction matrix. Inversion of the resulting matrix equa-

tion allowed the field distributions within the pit, in the near and far field to be

calculated.

Since the interaction matrix is independent of the incident field, illumination

conditions could be altered with limited additional computational effort, allowing the

Jones pupil to be calculated. This was performed assuming a spatially homogeneous

polarised beam. Given the calculated Jones pupil the polarisation properties of the

output signal for both a confocal and a conventional setup were considered. Little

difference was seen between the two configurations due to the homogeneity of the

field in the pupil plane, however both exhibited strong diattenuation in the scattered

field. Diattenuation was argued to arise due to differing phase delays introduced into

the scattered x and y field components. Heuristically this behaviour was described

by drawing an analogy with coupling to evanescent waves in transmission line theory.

In this model the effective impedance of each evanescent mode within the pit domain
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varies with the propagation constant, such that the illumination dependent mode

coupling produces a retardance in the scattered field and hence diattenuation in the

total field.

Evanescent coupling in sub-wavelength pit structures was also seen to give rise to

significantly different behaviour to existing ODS systems which exhibit oscillatory

variations in polarisation parameters with pit depth. Instead the MODS pits con-

sidered displayed an increasing polarisation dependence in both the scattered and

total field as the pit depth was increased. Asymptotic limits were however seen, for

example diattenuation in the total field draws close to its maximum value of unity

for a pit approximately one wavelength deep. Again this is in contrast to inten-

sity modulated systems in which the optimal pit depth is an odd integer of quarter

wavelengths [113]. Diattenuation was also shown to increase as the transverse aspect

ratio of the pit opening was increased.

A number of simplifying assumptions were made in the simulations presented in

this chapter, notably that of perfect conductivity. Such assumptions present a limit

to the validity of the quantitative findings, with disparities between simulations and

recent experimental results being discussed. In particular material differences are

expected to play a key role in explaining these disparities, but are however currently

not fully understood. Relaxation of the assumption of perfect conductivity remains

as future work. Qualitative results are however expected to hold since the underlying

physical processes will remain the same in more realistic models.
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Chapter 8

Single molecule studies

A physicist is just an atom’s way of looking at itself.

Niels Bohr

8.1 Introduction

Single molecule detection (SMD) has become an important technique in recent years

for studying dynamic processes such as chemical reactions and molecular motions at

a fundamental level [191, 310]. Historically these processes are usually studied using

methods based on ensemble averaging of a sample of molecules, however frequently

the mean properties so found are insufficient. Studies on single molecules are thus

advantageous as information, such as statistical distributions of particular quantities,

is not lost by averaging. It should however be noted that even single molecule studies

yield results that are temporally averaged over the course of the finite measurement

time.

Single molecule imaging techniques, such as fluorescence microscopy, can also be

used to track bio-molecular motions. This has applications in the pharmaceutical

industry where a good understanding of processes such as protein folding [302] and

molecule motions [168] is vital to new drug development. Of particular interest is the
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determination of the orientation of the emission dipole of single molecules since it

can be used as a means to label biological structures and track their conformational

changes and motions [46, 133, 307]. Furthermore, photophysical parameters of flu-

orophores, such as fluorescence lifetime, can depend on the molecule’s orientation,

a fact which can be used to study the molecule itself or its environment [51, 98].

Optical techniques in single molecule imaging however almost always require

the use of photon counting since individual fluorescent molecules are very weak

light sources. Under these conditions the accuracy of measurements are limited

by random variations in the measured signal, and statistical processing must thus

often be used to extract the desired information. This however requires a good

understanding of the random processes present. Poisson statistics, arising from the

quantisation of light, has been discussed heavily throughout this thesis, however

random fluctuations in the light source can prove important, as will be illustrated

in Section 8.2.1. In what follows consideration will not be given to antibunching of

photons that occurs when considering single photon sources. Instead results can be

considered as average results over a number of such single source studies, or over

multiple sources.

In this chapter, one particular source of signal fluctuations pertinent to orien-

tational measurements is considered, namely those arising from random rotations

which fluorophores may undergo; a phenomenon that shall be referred to as “wob-

bling”. Wobble of fluorophores, which within the framework of classical electrody-

namics can be considered as electric dipole emitters, can be either a continuous an-

gular variation or discrete orientational jumps [99], both of which will be considered

in the following and seen to possess different statistics (Section 8.2.2). Successive

jumps in the latter case may furthermore depend on previous dipole orientations

and the consequences when this is true and when it is not are discussed. Limiting

forms for both slow and fast wobble are also derived.

The latter half of this chapter (Section 8.3) considers a further aspect of single

molecule orientational measurements and presents a novel technique developed by

the author in collaboration with C. Maćıas Romero [70], which addresses the ex-

perimental difficulties in measuring the longitudinal component of an electric dipole

moment. Although methods based on structured illumination, image fitting and
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total internal reflection [53, 219, 257] exist, in which the signal depends upon the

full three dimensional orientation of a dipole, they are often restricted to specific

circumstances, can be subject to poor SNRs and are not suitable for real time mea-

surements. It is shown that by breaking the symmetry of the back focal plane field

distributions arising when imaging an electric dipole it is possible to introduce a de-

pendence on the longitudinal component of its dipole moment to the on-axis image

field. More specifically, a scheme wherein one half of the collected beam is subject

to a π phase delay is presented. Potential sources of error for experimental imple-

mentations are also discussed in Section 8.3.2. Following the underlying theme of

this thesis it is seen that a technique capable of measuring the full 3D moment of a

dipole (and hence also all three components of an illuminating electric field vector)

allows a further information channel to be analysed and exploited in electromagnetic

systems.

8.2 Photon statistics in single molecule orienta-

tional imaging

8.2.1 Signal-to-noise considerations

Statistical fluctuations in the number of detected photons can originate either from

noise present in a system or from random variations in the signal itself. The relative

importance of these sources can be seen by considering the SNR obtained considering

only the quantisation of light. In the context of single molecule imaging, Basché [13]

states that the practically obtainable SNR can be approximated by

SNR =
F qσP t0/AEp√

(F qσP t0/AEp) + CbP t0 + nbt0
, (8.1)

where F is an instrument dependent collection factor typically ranging from 1-8%,

q is the fluorescence quantum yield, σ is the peak absorption crosssection of the

molecule being studied, P is the laser power, t0 is the integration time, A is the beam

area, Ep is the energy of a photon in the beam, Cb is the background count per Watt

of excitation power (typically around 2× 108 photons/Ws in confocal experiments)
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Figure 8.1: Contour plot of SNR (dB) vs laser power and focused spot size (as parame-
terised by the NA of a focusing lens) assuming a wavelength of 395 nm and the following
parameter values based on use of green fluorescent protein (GFP): F = 7%, q = 0.79 [220],
t0 = 0.01 s, Cb = 2 × 108 photons/Ws, nb = 50. For numerical apertures greater than
unity an oil immersion lens of refractive index 1.5 was assumed. Saturation effects are
included such that σ = σ0/(1 + I/Is), where σ0 was taken to be 4× 10−16 cm2, I = P/A
and the saturation intensity Is was assumed to be 103 W/cm2 [223]. The inset shows the
variation of the SNR versus integration time for a 5mW laser focused through a 0.95 NA
lens.

and nb is the dark count of the detector. Figure 8.1 shows the behaviour of the SNR

over a range of experimental conditions from which it can be seen that a value no

better than around 15 dB is to be expected. Since this value is so low, variations in

the signal source can play an equally important role, if not a dominant one, when

determing the statistical behaviour of the detected signal. One such noise source

in orientational measurements is thus considered and its relative importance in the

detection process ultimately evaluated in the subsequent sections.
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8.2.2 Probability density function of the number of detected

photons

Data acquisition in single molecule experiments is invariably done by means of pho-

ton counting in which the predominant source of noise is quantisation noise. De-

noting the number of photons arriving at the detector during a measurement of

duration t0 by N(t0), the output reading is of the form Dout = GN , where G is some

gain factor. The arrival of photons at the detector is a Poisson random process with

PDF1 (c.f. Eq. (2.46))

pN (n) =
[R(t0)]n

n!
exp[−R(t0)] . (8.2)

R is the average rate of arrival of photons (intensity in units of hν) or equivalently

the time average of the instantaneous rate of arrival of photons at the detector, R(t)

(c.f. Eq. (2.47)), i.e.

R(t0) =

∫ t0

0

R(t)dt , (8.3)

where the functional dependence on t0 will henceforth be suppressed for clarity.

As an example many experimental setups use polarisation sensitive methods [97]

whereby the intensity of the detected signal is proportional to the square of the dot

product of the illuminating field and the electric dipole moment giving

R(t) = A cos2 (γ(t)− β) , (8.4)

where γ(t) is the transverse orientation of the dipole at time t, β is the transverse

angle of the plane of polarisation of incident light and A is a constant.

For a stationary dipole, Eq. (8.2) fully describes the photon statistics at the

detector, however a change in dipole orientation will cause a change in R. If this

change is random the arrival of photons at the detector, and hence their subsequent

detection, is termed a doubly stochastic process. Possible sources of such random-

ness include fluctuations in the illuminating light source and/or movement of the

molecule. Since for tracking applications the molecule’s environment is unlikely to

1The convention whereby an upper case letter denotes a random process and/or variable, whilst
the lower case equivalent denotes a particular outcome is again used throughout this chapter.
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be static, it is this latter factor that shall be studied here. Furthermore, only ori-

entational changes will be considered since probe molecules are often rigidly fixed

to targets. Under these circumstances R is a random variable and the probabilities

as given by Eq. (8.2) differ for each possible value. As such Eq. (8.2) is recast as a

conditional PDF, as in Section 2.1.3.1, where r will be used to denote a particular

outcome of R.

Assuming knowledge of the random nature of the time averaged photon rate, as

characterised by its PDF fR(r) (see Section 8.2.3), Eq. (2.18) can be used to find

the joint PDF of N and R, i.e. the probability that N = n and R = r. Integrating

over the joint PDF gives the marginal PDF of the number of detected photons

pN(n) =

∫ ∞
0

fR(r)
(ηr)n

n!
e−ηr dr. (8.5)

where the non-ideal nature of the detector has also been included by introduction

of the quantum efficiency η. Eq. (8.5), known as Mandel’s formula, is equivalent

to averaging the conditional probability with respect to the average intensity and

requires knowledge of fR(r) which is discussed in the following section.

8.2.3 Probability density function of time averaged inten-

sity

8.2.3.1 Discrete reorientational jumps

In this section attention is given to determining the PDF of the time averaged

intensity fR(r). The case when changes in the orientation of a dipole occur discretely

is considered first. This could for example be associated with the desorption and

readsorption of fluorophores from and onto a glass surface [97]. In what follows, an

electric dipole will be said to be in an orientational state, by which it is meant that

the dipole makes an angle γ to the x-axis in the x-y plane and an angle χ to the

z-axis, as illustrated in Figure 6.13(b). The dipole then remains fixed at this angle

for a time τ before moving to a new state. Here discussion will be restricted to a

two dimensional system (i.e. χ = π/2) for simplicity, but also because the output

signal in many experimental techniques is only sensitive to the transverse angle γ
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(c.f. Eq. (8.4)). Conceptually the full three dimensional situation is identical and

requires only minor mathematical modifications as is discussed in Section 8.2.4.

Assuming that M different orientational states are occupied during a single mea-

surement the time averaged photon rate is given by:

r = A
(
cos2(γ1 − β)τ1 + cos2(γ2 − β)τ2 + · · ·+ cos2(γM − β)τM

)
, (8.6)

where γj and τj are the parameters corresponding to the jth occupied angular state.

Without loss of generality, the dipole is assumed to be initially orientated parallel to

the x-axis. It should be further noted that changes in the dipole angle are assumed

to occur instantaneously.

It is assumed that the law of rare events is applicable such that M is a Poisson

random variable. Expressed alternatively, albeit equivalently, the length of time a

dipole remains in each state is distributed according to an exponential law [121], i.e.

fT (τ) = ν exp(−ντ) (8.7)

where fT (τ) denotes the PDF of τ , and ν is the average rate at which dipole jump

events occur.

To approach the problem, first assume a fixed M and let Xj = A cos2(Γj − β)

and Zj = XjTj such that R =
∑M

j=1 Zj and

fZj(zj) =

∫ ∞
0

∫ A

0

δ(zj − xjτj)fXj ,Tj(xj, τj)dxjdτj . (8.8)

Since a measured intensity is always positive the Laplace transform can be defined

for each intensity contribution, Zj, in Eq. (8.6) (see Section 2.1.1.2), whereby

Z∗j (s) =

∫ ∞
0

fZj(zj) exp(−szj)dzj , (8.9)

which from Eq. (8.8) can be written in the form

Z∗j (s) =

∫ π

−π

∫ ∞
0

fΓj ,T (γj, τ) exp
(
−sA cos2(γj − β)τ

)
dτ dγj . (8.10)

It should be noted that in Eq. (8.10) the subscript j on T and τ has been dropped
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since each τj term is assumed to be identically and independently distributed2.

Following [159] and applying Eq. (8.10) the Laplace transform of fR(r|m) is then

given by

R∗M(s) = Z∗1(s)Z∗2(s) · · ·Z∗M(s) , (8.11)

from which the PDF of the average photon rate R then follows by performing the

expectation with respect to M such that:

fR(r) =
∞∑
m=0

pM(m)fR(r|m) , (8.12)

where fR(r|m) = L−1 (R∗M=m(s)) and the weighted summation over the possible val-

ues of M = m is required since the number of reorientations during a measurement

is random.

With this knowledge in hand it remains to find an explicit expression for Z∗j (s).

Since dipole angle and state occupancy time are assumed independent such that

fΓj ,T (γj, τ) is given by the product of the marginal probability distributions fΓj(γj)

and fT (τ), Eq. (8.10) can be evaluated. Using Eq. (8.7) it follows that

Z∗j (s) =

∫ π

−π

∫ ∞
0

fΓj(γj) ν exp
(
−ντ − sA cos2(γj − β)τ

)
dτ dγj ,

=

∫ π

−π

νfΓj(γj)

ν + sA cos2(γj − β)
dγj . (8.13)

The physical process governing the random wobble of the electric dipole will

dictate the form of the probability distribution for Γj. For example, rebinding of a

fluorophore to a probe site may be modeled using a uniform PDF

funi
Γj

(γj) =

 1/2∆ for −∆ ≤ γj < ∆

0 otherwise
. (8.14)

2The independence of each Zj can be shown to follow from the assumed independence of τj
regardless of the independence of γj [159].
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Standard integration tables [95] then give the analytic result

Z∗uni(s) =
1

2∆
√
sAν + ν2

[
arctan

(√
ν

sA+ ν
tan(∆− β)

)
+ arctan

(√
ν

sA+ ν
tan(∆ + β)

)]
. (8.15)

Finding a full analytical result for fR(r) is complicated however in the limits

of small and large ν simpler results naturally emerge. These limits correspond

to only a few, and to many events per measurement respectively. As the rate at

which jump events occur decreases the contribution from high m terms in Eq. (8.12)

becomes negligible. In the limit of ν � 1 only the first term produces a significant

contribution and the dipole can be considered as fixed during a single measurement

and hence

fR(r) = fR(R) , (8.16)

i.e. the PDF of the average intensity is the same as the PDF for the instantaneous

intensity. Fortunately this agrees with intuitive expectations.

When dipole wobble is on a time scale much shorter than the duration of a

measurement, i.e. large ν, many terms in the summation of Eq. (8.12) must be

considered. Since each value of τj is independent, each Zj term is also independent.

There are then two cases to consider; that when each subsequent value of γ is

independent and that when they are not. In the former case the Central Limit

Theorem can be invoked. As such the PDF of the average intensity in the limit of

large ν is given by

fR(r) =
1√

2πσ2
R

exp

(
− r2

2σ2
R

)
. (8.17)

Assuming dependence of consecutive terms means the PDF of the dipole angle

γj is centered on its previous outcome, γj−1. For a particular realisation of γ, that

is to say one possible outcome of the sequence of dipole orientations,

fΓj(γj) = fΓ(γ − γj−1) . (8.18)

When averaged over all possible realisations the result is similar to Eq. (8.14) ex-

cept now the width of the distribution increases with each subsequent jump. Con-
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sequently the condition of identical distributions required for validity of the Central

Limit Theorem is not satisfied. If, however, the Lyapunov condition [63] is satisfied

then the Central Limit Theorem still applies. Numerical simulations show that this

is the case.

8.2.3.2 Continuous angular variation

Changes in dipole orientation may occur continuously and it is here that considera-

tion is given as to how this affects the PDF of the time averaged intensity. It can be

shown [49] that the probability distribution function of the orientation of the dipole

at a time t satisfies the differential equation:

∂fΓ

∂t
= α

∂2fΓ

∂γ2
, (8.19)

subject to the initial condition fΓ(t = 0) = δ(γ − γ0), where δ represents the

Dirac delta function. This diffusion equation holds when subsequent orientations

are dependent on the previous orientation. A solution to Eq. (8.19) is

fΓ(γ, t) =
1√

4παt
exp

(
−(γ − γ0)2

4αt

)
, (8.20)

where an implicit assumption has been made that time intervals and diffusion rates

(as set by the diffusion coefficient α) are small enough such that the PDF has not

been equalised over all angles.

To find the PDF of the average intensity, a transformation of variables is first

used to find the PDF of the instantaneous intensity fR(R) via Eq. (2.21) which,

upon integration over the length of a measurement, gives the desired result (see

Section 2.1.2). Thus

fR(r) =
1

t0

∑
k

∫ t0

0

fΓ(γk, t)√
r(A− r)

dt , (8.21)

where γk are the solutions to the equation r = A cos2(γ − β) and the 1/t0 factor is

to ensure correct normalisation of the PDF. The integral can be evaluated using the

244



8.2 Photon statistics in single molecule orientational imaging

substitution x2 = t−1 and integration by parts which yields:

fR(r) =
1√

παt0 r(A− r)

∑
k

exp

(
− γ2

k

4αt0

)
− |γk|

2αt0
erfc

√ γ2
k

4αt0

 , (8.22)

where erfc(. . .) denotes the complimentary error function.

For the independent case fΓ(γ, t) can not depend on time (assuming the physical

cause of the wobble does not vary in time) and as such Eq. (8.21) reduces to fR(r) =

fR(R).

Figure 8.2(a) shows a histogram of the results of Monte-Carlo simulations with

104 realisations for continuous variation and a diffusion coefficient of α = 5. Various

theoretical fits, as based on Eq. (8.22), are also drawn from which it can be seen that

for α = 0 (no dipole wobble) the PDF is identical to that of a Poisson distribution

as would be expected. Good agreement can also be seen between the simulated and

theoretical results.

Furthermore, using these PDFs it is possible to calculate the total cumulative

probability of N taking any value below n. Confidence levels including or neglecting

dipole wobble can then be calculated. Assuming the values β = π
4
, γ0 = 0, A =

0
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Figure 8.2: (a) Histogram of the time averaged intensity for a dipole undergoing contin-
uous angular diffusion with α = 5, β = π/4, t0 = 10−3 s and A = 105 photons/s shown
with theoretical fits for different diffusion coefficients. (b) Variance of the number of de-
tected photons as a function of the peak signal strength A and the cumulative probability
functions for wobbly and stationary dipoles (inset) for the same parameter values as (a).
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105 photons/s, t0 = 10−3 s and α = 5 it was calculated that when neglecting dipole

wobble an experimental measurement can determine the orientation of a dipole

within a range of 1.78◦ with 90% confidence. Inclusion of dipole wobble causes this

to increase to 2.43◦.

Discrepancies such as that seen in the previous calculation further highlights

the need to include dipole wobble in statistical processing and error analysis where

appropriate. In this regard the reader’s attention is drawn to Figure 8.2(b) which

shows a plot of the expected variance of the photon count n as a function of the

number of photons in the system (as parameterised by A), when signal variations

from photon counting and dipole wobble are considered separately3. Quadratic be-

haviour can be seen for the case of dipole wobble only, whilst for photon counting

the linear behaviour expected from a pure Poisson random variable is evident. The

relative importance of the two factors can be seen. At very low light intensities,

where it is likely to be impractical to conduct experiments, photon counting domi-

nates. For the intermediate regime both influences are comparable until eventually

at higher intensities the molecular wobble dominates.

8.2.4 Three dimensional dipole wobble

Earlier discussion was restricted to the case of two dimensional dipole wobble, how-

ever here the mathematical modifications required to accommodate rotation in all

three dimensions are explicitly given. Obviously such three dimensional variation is

only of significance if the measured signal is sensitive to the full three dimensional

orientation as described by the two angles γ and χ as shown in Figure 6.13, i.e.

R = R (γ, χ) . (8.23)

Random variation in the orientation of the dipole is described by the joint PDF of

Γ and χ. Since in most physical situations Γ and χ will be independent the joint

3Although arguable a Fisher information analysis, as has been extensively utilised in this text, is
possible using the derived PDFs, this is omitted here since consideration of the variance is adequate
in highlighting the key points.
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PDF can be written in the form

fΓ,χ (γ, χ) = fΓ(γ)fχ(χ) . (8.24)

When considering the discrete case this means Eq. (8.10) becomes a triple integral

Z∗j (s) =

∫ π

−π

∫ π

0

∫ ∞
0

fΓ(γ)fχ(χ)fT (τ) exp (−sR (γ, χ) τ) dτ dχ dγ , (8.25)

however all of the subsequent working remains unchanged. In the continuous case

the two dimensional diffusion equation must be solved

∂f

∂t
= α

(
∂2f

∂γ2
+
∂2f

∂χ2

)
, (8.26)

to give the joint PDF

fΓ,χ(γ, χ) =
1

4παt
exp

(
−(γ − γ0)2

4αt

)
exp

(
−(χ− χ0)2

4αt

)
, (8.27)

which when integrated according to the three dimensional analogue of Eq. (8.21)

yields

fR(r) =
1

8παt0
√
r(A− r)

∑
k

[
Γ̃

(
0,

(γk − γ0)2 + (χk − χ0)2

4t0α

)]
, (8.28)

where Γ̃(a, z) =
∫∞
z
xa−1e−xdx is the incomplete Gamma function and γk and χk

are the solutions to the equation r = R(γ, χ).

8.2.5 Discussion

It has been shown that the variation of the orientation of a dipole over the course of

a finite duration measurement can alter the statistical properties of the number of

photoelectrons induced in a photon counting detector. Although analytic evaluation

of Eqs. (8.5) and (8.12) will in general not be possible, some general observations

can be made regarding the probability functions involved.

Considering first the PDF of the time averaged photon rate, different forms and

behaviour for differing dependence conditions and time scales can be expected. More
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specifically, although the distribution will always be peaked around the initial angle,

when subsequent orientations of the dipole are dependent on earlier positions the

distribution is narrower for slower changes, whilst the converse is true when inde-

pendence holds. This can be understood since the dependent situation is essentially

a diffusion problem and so the larger the ratio of spreading rate (as given by the

diffusion coefficient) to integration time the larger the range of angles the dipole

can cover during a measurement. On the other hand the distribution focuses when

successive orientations are independent since the central probability peak for each

Z term is reinforced with each additional term in the average.

For wobbling on faster time scales the PDF of the average intensity has been

shown to tend to that of a bell-shaped Gaussian distribution (for discrete variations).

Slower time scales will exhibit a sharper more centralised distribution, since for

small ν, i.e. slow variation, only a few terms significantly contribute to the average

performed by the detector. In this case the peaked nature of both the exponentially

distributed state occupancy times and the Poisson PDF for the number of events per

measurement dominate. For larger ν the Poisson PDF becomes smoother and the

position of the peak moves to larger m. Low m terms of Eq. (8.12) are then negligible

and the peaked nature of the exponential PDF is less dominant. Eventually the

Poisson PDF tends to a Gaussian itself whereby it acts as an envelope for the PDF

of the average dipole angle.

In terms of the photoelectron statistics, it can be said that for smaller angular

ranges of dipole oscillation one would expect less deviation from conventional Pois-

sonian behaviour. Furthermore, if the variations are on a timescale much longer

than the integration time then the additional random behaviour will be unobserv-

able. On the other hand if fluctuations are much faster than the detector response

the effects are likely to again go unnoticed. That said, dipole wobble has been seen

at many different time scales ranging from the subnanosecond level [298], through

the millisecond regime [133] and higher [99, 322]. In conjunction with the varying

time resolution of different experimental setups [191] and the large angular ranges

over which fluorophores can oscillate, e.g. 26◦ has been observed [199], it is likely

that non-Poisson behaviour will be frequently encountered.
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8.3 Longitudinal dipole orientation and field map-

ping

Many current techniques for determining the orientation of a dipole exist e.g. [97,

133] however these are commonly limited to finding the transverse angle. Uncer-

tainty over the longitudinal dipole component can lead to large errors (e.g. [98]) and

hence it is desirable to find the full 3D orientation of the molecule. In this section

a novel technique capable of determining the 3D orientation of a single fluorescent

molecule in real time is thus presented. As is pertinent to any practical technique,

the experimental tolerances of the setup are investigated including misalignments

and the finite width of the molecule’s emission spectrum.

8.3.1 Description of system

Before tackling the issue of how the longitudinal orientation of a fluorescent molecule

(again modelled as an electric dipole emitter with moment p = (px, py, pz)) can

be measured it is insightful to revisit the topic of imaging a dipole as discussed in

Section 6.4.2.1. Therefore, once more consider collecting and collimating the far field

radiation pattern of an electric dipole using a high numerical aperture, aplanatic lens,

assumed to be ideal and immersed in a medium of the same refractive index as that

containing the dipole. Although this constitutes a special case, a fuller treatment in

which the dipole field also propagates through a number of dielectric interfaces (e.g.

a cover glass-immersion fluid interface) can be modelled using the theory detailed

in [275], however the symmetry of the problem is unaltered and hence the following

discussion is also applicable. It is also worthwhile to note that, although electric

dipoles will be exclusively considered in what follows, the discussed technique works

equally well when imaging magnetic dipoles. Vectorial ray tracing can be used to

find the electric field Ẽ in the back focal plane of the collector lens as was detailed

in Section 6.4.2.1. Repeating the result here for ease of reference the collimated field
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collected from an electric dipole is given by

Ẽ1(θ1, φ1) =
1

2
√

cos θ1


(q1 + q2 cos 2φ1)px + q2 sin 2φ1py − q3 cosφ1pz

q2 sin 2φ1px + (q1 − q2 cos 2φ1)py − q4 sinφ1pz

0

 , (8.29)

where

q1 = cos θ1 + 1 ,

q2 = cos θ1 − 1 ,

q3 = 2 sin θ1 ,

q4 = 2 cos θ1 .

Eq. (8.29) shows that the field in the back focal plane of the collector lens, can be

considered as having contributions from three independent electric dipoles aligned

with the Cartesian coordinate axes. Figure 8.3 shows the electric field components

Ẽx (top row) and Ẽy (bottom row) in the back focal plane associated with each of

these dipoles in turn (left to right).

Refocusing of the collected beam by a second low numerical aperture lens corre-

sponds to a coherent, component-wise integration over the back focal plane4. Semi-

analytic evaluation of the integrals can be achieved as has been discussed earlier,

however the symmetry of the distributions in Figure 8.3 immediately shows that at

the geometric focus of the second lens, points in the integration plane will either can-

cel pairwise or superpose constructively. For example, for a dipole oriented parallel

to the x-axis, the y component of the focused field must be zero since for each point

(θ1, φ1) in the back focal plane there is a corresponding point of equal amplitude,

yet out of phase by π at (θ1, φ1 + π/2). Since the optical path length from each

of these points to the geometric focus is equal they destructively interfere to give

4Strictly speaking the integration should be performed over the Gaussian reference sphere,
however for a low numerical aperture lens the inter-component mixing caused by bending of rays
of light is negligible and it is hence satisfactory to integrate over the back focal plane. The form of
the image field of an electric dipole using two high numerical aperture lenses was considered earlier
in Section 6.4.2.1 in which it was found the field on axis takes the form E2 ∝ (KA

0 px,K
A
0 py,K

B
0 pz),

where KA
0 and KB

0 are constants and KB
0 /K

A
0 � 1. This arrangement will be neglected in this

chapter however due to its practical difficulties.
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Figure 8.3: Field distributions for Ẽx (top) and Ẽy (bottom) in the back focal plane of a
collecting lens (NA = 0.966) arising from orthogonal electric dipoles orientated along the
x, y and z coordinate axes respectively (left to right).

a null signal. However, for the x component, each point in the back focal plane is

in phase (although of differing amplitudes) resulting in constructive interference at

the detector. The converse is true for a dipole oriented parallel to the y axis, whilst

for a purely longitudinal dipole there is destructive interference in both the x and

y field components at the focus. The resulting on-axis focused field thus takes the

form E2 ∝ (px, py, 0) in agreement with Section 6.4.2.1.

This result encapsulates the difficulty in determining the pz component of a

dipole, however given the arguments above it is evident that if the symmetry of the

distributions in the back focal plane of the collector lens is broken, a significant pz

dependence can be introduced into the “image” of the dipole. Symmetry breaking

of this type could be done, for example, by apodisation or phase modification of the

beam; the latter being preferable in single molecule experiments, since phase masks

do not reduce the optical throughput of the system. Imposition of a π phase delay

to the collimated beam in the 1st and 4th quadrants with respect to the beam in the

2nd and 3rd quadrants, for example, gives rise to constructive interference in the Ex

component when imaging a purely longitudinal dipole. Such a mask, placed in the

back focal plane of the collector lens, is described by the amplitude transmittance
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Figure 8.4: (a) Proposed phase mask with (b) rotational misalignment or (c) transla-
tional misalignment.

function

T (x, y) =

 −1 for x ≥ 0

+1 for x < 0
, (8.30)

and in its simplest form could be implemented using a glass block of appropriate

thickness placed across one half of the beam as shown in Figure 8.4(a). Alterna-

tive implementations could however include use of a Pockels cell or a liquid crystal

modulator. As such the optical setup shown in Figure 8.5 and proposed by the

author and colleagues in [70] provides a means to detect the full 3D orientation of

an electric dipole in real time.

In the setup of Figure 8.5 light collected from a dipole is incident into a beam

splitter from which one of the output beams is further passed through a Wollaston

prism (WP) which splits the field into its constituent Ẽx and Ẽy components. The

other portion of light output from the beam splitter is passed through the phase mask

described by Eq. (8.30) so as to break the symmetry in the beam profile. Finally the

field in each arm is refocused onto point detectors (such as avalanche photodiodes)

which respectively record the intensities D1, D2 and D3. The use of point detectors

ensures the detection process is field sensitive such that D1 = Cx|px|2, D2 = Cy|py|2

and D3 = Cz|pz|2. The effect of relaxing this assertion will be considered in the next

section.

The constants Cx, Cy and Cz unfortunately need to be calibrated before mea-

surements can be made, as can be performed using a known sample. It is however
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L1 L2

Dipole

BS

Light

WP
D1

D2

D3

Phase plate

Pinhole

Pinhole

Figure 8.5: Proposed optical setup for determination of the full three-dimensional ori-
entation of an electric dipole. Notation is as follows: L1 - illuminating lens, L2 - collector
lens, BS - beam splitter, WP - Wollaston prism, D - detector.

reasonable to assume that Cx = Cy since the two detection arms are identical al-

beit for a 90◦ rotation in the state of polarisation. Furthermore, for orientational

measurements it is only necessary to work with ratios of detector signals implying

that only the value of the constant C = Cx/Cz need be found as can be done using

a gold bead or other similar point scatterer. Point scatterers of this type behave as

free dipoles in which an effective electric dipole moment peff is induced proportional

to the electric field vector of the illumination Eill [278, 291]. Theoretically, the three

detector signals will hence map the focused field distribution arising from the illumi-

nation beam (which can be calculated exactly using the Debye-Wolf integral) as the

location of the scatterer is scanned in the object plane. It is then a simple matter

to determine the constant of proportionality to determine C. Since C is dependent

on the splitting ratio of the beam splitter it can be controlled to some extent, but

does cause a trade-off of SNR between the different detector arms.

Point scatterers not only provide a means to calibrate the system of Figure 8.5

but they also provide a means by which the full 3D electric field vector of an illumi-

nating field can be found. The proposed optical setup hence provides a significant

move towards full 3D polarimetry. In its current form there is an ambiguity as to

which quadrant a measured dipole moment (or equivalently polarisation of the il-

luminating field) lies in, since only the magnitude of the three dipole components
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is measured. Introduction of additional arms in a similar fashion to a DOAP does

however allow these ambiguities to be overcome, although the light incident on

each detector is reduced hence having implications on the achievable measurement

accuracy (see Section 5.2.4). Finally it is worth mentioning that if measuring a

fixed dipole of moment p, in which the radiated field has strength proportional to

p · Eill it becomes important to match the excitation field to the specific detection

needs (see Section 6.3.2 for an example involving measurement of transverse dipole

orientation).

8.3.2 System tolerances

Of importance in any practical implementation of the proposed detection scheme

are the experimental tolerances of the phase mask. Departure from the ideal setup

introduced above may arise in many guises, such as mask misalignments, attenuation

and finite sized detectors. Each of these and a number of additional effects will be

considered in an attempt to characterise the proposed system.

8.3.2.1 Mask misalignments

Consider first misalignments of the phase mask, which in general can be treated as

a combination of both a rotational and translational misalignment as depicted in

Figure 8.4. A rotational misalignment by an angle ∆φ modifies the transmittance

function, however assuming a symmetric pupil (which is normally the case) inte-

gration over the field does not yield any dependence on ∆φ. The detector signals

are thus insensitive to pure rotational misalignments, a property which can again

be attributed to the symmetrical nature of the back focal plane field distributions.

Translational misalignments of the mask do however have a detrimental effect on the

detector signals. A horizontal shift of, say, ∆x modifies the transmittance function

to

T (x, y) =

 −1 for x ≥ ∆x

+1 for x < ∆x
(8.31)

which in general causes a mixing of the px and py signals into D3, since destructive

interference for these cases is no longer complete. To parameterise the extent of

this mixing an extinction ratio is defined as the ratio of the detected intensity in
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D3 when measuring a dipole parallel to the x (or y) axis, denoted Dx
3 (and Dy

3), to

that recorded for a z oriented dipole (Dz
3). Figure 8.6(a) shows the worsening of the
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Figure 8.6: Extinction ratios of the optical setup shown in Figure 8.5 as a function
of (a) mask misalignment (b) spectral bandwidth, (c) detector aperture size, (d) mask
attenuation and (e) width of phase mask transition as depicted in (f). (b) also shows the
simulated SNR for different detector sizes.
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extinction ratio as the mask is moved from the ideal position to being completely

absent from the beam. Numerical simulations assumed a wavelength of 450 nm,

numerical apertures of 0.95 and 0.01 for the collector and imaging lens respectively,

and a beam splitting ratio of 2:1 such that each detection path receives equal power.

8.3.2.2 Finite source spectral bandwidth

Hitherto discussion has been limited to monochromatic light of wavelength λ. This

is however an unrealistic assumption if measuring the orientation of fluorescent

molecules since they each emit a characteristic spectrum S(λ) of wavelengths with

an associated bandwidth ∆λ. A non-zero bandwidth has consequences with regards

to the glass slab used to impose the π phase delay since it can only be designed

to operate perfectly at a single wavelength. The total intensity recorded by each

detector can be calculated as an incoherent superposition of that measured for each

wavelength individually such that

Dtot
j =

∫ λmin+∆λ

λmin
S(λ)Dj(λ;λ0)dλ , (8.32)

where Dj(λ;λ0) is the detector reading (j = 1, 2, 3) for light of wavelength λ in the

presence of a phase plate designed for operation at λ0 and λmin is the lower bound

on the spectrum.

Results from numerical simulations assuming a Lorentzian spectrum profile ,

S(λ) =
2∆λ

∆λ2 + 4π2(λ− λ0)2
, (8.33)

centered on the peak emission wavelength, λ0 = 455 nm, of Pacific Blue [120] (a

common fluorescent dye) are shown in Figure 8.6(b). Other spectral profiles give

similar results. Neglecting chromatic aberrations that may occur in the focusing

lens, no variation is seen in the extinction ratios for detectors D1 and D2 and thus

only the extinction ratios for D3 are shown. Inspection of this plot shows that the

px and py signals mix into the D3 signal and become double that of the pz mea-

surement for a bandwidth of approximately 100 nm. Although typical fluorophores

have bandwidths of ∼ 30 nm this mixing effect is likely to limit the performance of

the setup. Use of achromatic waveplates, typically with a bandwidth of a few hun-
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8.3 Longitudinal dipole orientation and field mapping

dred nanometers, to implement the phase mask would however greatly improve the

situation. The results of Figure 8.6(b) thus represent the worst case performance.

8.3.2.3 Finite sized detectors

As a further consideration the previous assertion of point detectors is relaxed. In

general D1 and D2 operate as confocal microscopes with finite sized pinholes il-

luminated with x and y polarised light respectively, an analysis of which can be

found in [277]. Consequently only the modified detection path need be consid-

ered. Finite sized detectors record the integrated intensity of the focused light

distribution over their spatial extent, however as discussed in Section 6.4.2.1 the

off-axis image of a dipole is dependent on all three dipole components [278]. For a

dipole with moment p = (0, 0, 1) parasitic signals are thus introduced into detec-

tors D1 and D2. Treating these signals as a noise source, a SNR can be defined

as 10 log10 (Dz
3/2D

z
1), the behaviour of which is shown in Figure 8.6(c) (the factor

of two is introduced since the parasitic signal is introduced to two detectors). The

extinction ratio Dz
1/D

z
3 = Dz

2/D
z
3 is also plotted for comparison. Typical values

of the SNR in single molecule experiments are of the order of 15 dB (Figure 8.1)

and as such Figure 8.6(c) shows that the effect of a finite detector size becomes a

dominant factor once the radius of the detector is approximately half the size of the

Airy disc. Detectors smaller than this are thus preferable. It is also found that the

SNR arising when measuring a pure pz dipole is worse than for measuring pure px

and py dipoles and is hence the limiting case.

8.3.2.4 Mask imperfections

Non-ideal characteristics of the phase mask are also likely to affect the performance

of the optical setup and two such imperfections have thus also been modelled. The

first of these is to introduce an attenuation into the beam to represent possible

absorption by the mask (zero attenuation corresponds to complete transmittance),

such that transmission function is given by

T (x, y) =

 −T0 for x ≥ 0

+1 for x < 0
. (8.34)
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where 0 ≤ T0 ≤ 1 is the transmittance of the phase mask. An imperfection of this

nature, again destroys the complete destructive interference in the third arm when

measuring pure px and py dipoles, giving rise to parasitic signals. Extinction ratios

for these signals for differing degrees of attenuation were calculated and are shown

in Figure 8.6(d).

Finally, the phase mask of Figure 8.4 ideally requires a sharp discontinuity in the

the imposed phase profile. Physical realisation of such a sharp phase discontinuity

is unlikely and thus the affect of a continuous phase profile, defined by

∆Φ = arctan

(
1

∆w

x

fNA

)
(8.35)

and shown in Figure 8.6(f) for different transition width factors ∆w, was considered.

The resulting extinction ratios are shown in Figure 8.6(e). From Figures 8.6(d) and

8.6(e) it is seen that the setup is markedly more susceptible to imperfections which

alter the phase of the back focal plane field distributions than to amplitude changes.

In as far as the principle of operation of the proposed setup relies on interference, be

it constructive or destructive, at the detector plane such an increased dependence

would be expected.

8.4 Conclusions

Focus throughout this chapter has centered on single molecule studies, which is

fast becoming a principle scientific tool in many areas of research and development.

Two distinct problems have been considered centering on orientational measure-

ments which are frequently employed in such single molecule studies. The first

problem concerned noise statistics that will unavoidably be present in any optical

measurements made. It was seen through consideration of the relative size of noise

present in single molecule experiments that not only will fundamental quantisation

noise be present, but other fluctuations that may be present in system can often be

comparable in size. In particular, the issue of rotational motions of single molecules,

be they discrete jumps or continuous angular diffusion, during the course of a mea-

surement was considered and PDFs for the detector photoncount derived. Although
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results derived were valid for all timescales over which such rotations can occur a

number of limiting cases were given. Furthermore, by study of the resulting fluctua-

tions in the the detector photoncount, regimes were identified under which different

noise sources were seen to dominant, an important aspect in terms of system design

and noise analysis.

The second and separate issue addressed, was the determination of the longi-

tudinal orientation of single molecules; something which has long eluded scientists.

Symmetry considerations gave rise to the design of a simple optical system capable

of measuring the full 3D orientation of single molecules. Experimental verification

of the proposed system is currently ongoing. Not only could such a system open

new opportunities and improve existing techniques in, say, biological research, but

also brings the possibility of 3D polarimetry to the fore. By exposing an addi-

tional degree of freedom of physical fields to experimental measurement additional

informational gains may be possible in the future.
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Chapter 9

Conclusions

In light of knowledge attained, the happy achievement seems almost
a matter of course, and any intelligent student can grasp it without
too much trouble. But the years of anxious searching in the dark,
with their intense longing, their alterations of confidence and
exhaustion and the final emergence into the light – only those who
have experienced it can understand it.

Albert Einstein

Central to this thesis has been the characterisation and exploitation of the oppor-

tunities afforded by the electromagnetic (i.e. vectorial) nature of light. To this end

the work presented can be seen to follow one of three running themes: quantification

of polarisation information; analytic formulations so as to simplify the propagation

of electromagnetic waves; and development of specific polarisation based optical

systems.

Characterising the informational limits inherent in polarisation based optical sys-

tems in essence reduces to considering the uncertainty present in any observations.

Uncertainty can for example arise from a stochastic variation in the polarisation

of light being measured, or from random noise perturbations to detector readings.

Fisher information was deemed to be a suitable metric by which to measure the lim-

its imposed by such sources of uncertainty as conveniently expressed by the CRLB.

From the basis of statistical estimation theory, Stokes space was introduced and
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Fisher information used to define a polarisation resolution within this space, as is

germane to Stokes polarimetry. Extension to a 16D Mueller space as appropriate for

Mueller polarimetry is possible, indeed the definition is applicable in an appropriate

Hilbert space associated with inference of any parameter vector, such as those found

by means of a Lu-Chipman polar decomposition.

Informational limits in vectorial optics, at least within a classical framework, are

found not to be absolute, but instead are fundamentally set by the mean number of

information carrying photons. This is in stark contrast to many existing definitions,

such as Rayleigh’s criterion. Fisher information can be formulated within a quantum

context, however the extent to which the conclusions drawn are affected, say by

incorporation of the commutation relations on Stokes parameters, has yet to be

fully determined. Further to the definition of polarisation resolution, alternative

metrics, such as the number of degrees of freedom and the efficiency of observation

were also defined as may be more suitable for multiplexed systems or experiments

with low light levels.

Through maximisation of the polarisation resolution (or D-optimality) polari-

metric systems can be optimised. Whilst, within the limited assumptions of exist-

ing design strategies, optimisation with regards to Fisher information was found to

give consistent results, such as signal equalisation between multiple detectors and

maximally distant measurement projection states, the technique developed within

this thesis allows a more holistic approach to be adopted. For example the Fisher

information formalism allows easy incorporation of both signal dependent noise mod-

els (e.g. Poisson noise arising from photon counting) and complex post-detection

processing. Analytic results were given in this vein, with regards to the Mueller

matrix decomposition of Lu and Chipman. Probabilistic a priori information can

furthermore be easily included, allowing additional gains to be made. It is hence

the author’s belief that while existing optimisation practices are still invaluable, and

frequently more straightforward to implement, careful consideration must be given

by system designers as to whether further influences are at play and whether the

additional gains then achievable using the Fisher information formalism are neces-

sary. It is envisaged that D-optimality will thus be sought in scenarios in which high

precision is needed, photon numbers are low, or a priori information is possessed,
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such as astronomy or communications.

Whilst standard polarimetry and the associated optimisation routines are suffi-

cient when considering homogeneously polarised light or measurement at a point,

in a polarisation imaging context the situation becomes unsatisfactory. Due to the

mixing of the electric field components in high numerical aperture focusing high im-

age fidelity is generally unachievable and an informatic approach is more suitable.

Motivated by such considerations Fisher information was further employed to anal-

yse inference problems in polarisation microscopy. Specifically electric dipole sources

were considered and potential coherent and incoherent crosstalk between multiple

dipoles, investigated in the context of orientational measurements. Although formu-

lated in terms of electric dipoles, similar results can be found for magnetic dipoles.

Critically it was shown that poor accuracy frequently results when parameter infer-

ence is based on zero readings, due to the increased sensitivity to unknown noise

sources. Increased redundancy and averaging introduced in an imaging scenario can,

however, help to compensate for such poor performance.

Prerequisite to the modelling and analysis of more advanced polarisation based

imaging systems is the apparatus by which to describe the propagation of arbitrary

electromagnetic waves in such systems. Whilst a Green’s tensor formulation presents

a suitable solution, it frequently requires significant computational resources, a sit-

uation which can be avoided by closer consideration of the problem. A new for-

mulation, based on the scaled Debye-Wolf diffraction integral and generalised Jones

calculus, was thus developed and presented for focusing of electromagnetic beams:

an integral part of any imaging system. Intentionally the treatment was kept as gen-

eral as possible, allowing beams of arbitrary spatially inhomogeneous polarisation

and coherence properties to be focused by systems of arbitrary numerical aperture

and Fresnel number, something which to date has not been possible. Simplifications

were also presented by employing a coherent mode expansion. Owing to continuing

debate in the literature, both scalar- and vector based coherent mode representa-

tions were used. In so doing it was shown that computational gains and improved

mathematical tractability are achievable with an assumption of harmonic angular

variation, a somewhat less restrictive imposition than the customary assumption of

rotational symmetry. Ultimately the developed theory is suitable for application in a

263



Chapter 9: Conclusions

wider range of problems beyond those examined in this thesis, however extension to

informational considerations when imaging non-dipolar sources still requires further

investigation.

Restricting to fully coherent fields an eigenfunction expansion was devised to

further complement the description of focusing. That said, a single coherent mode,

being by construction spatially coherent, can be represented by means of the eigen-

function expansion and hence the field distribution in the focal plane easily calcu-

lated. Whilst the expansion was seen to possess a number of useful computational

properties, particular benefit can be drawn from the inherent structure of an eigen

representation and its suitability for solution of inverse problems. Unfortunately

the constraints imposed by Maxwell’s equations are not automatically fulfilled by

the developed series since each field component is expanded separately, thus pre-

senting complications when attempting to solve such problems. Particularly, in the

specification of an inverse focusing problem one (or more) field components must

be left unconstrained, which was demonstrated to hinder significant resolution gains

in the focused intensity distribution, as may be desirable for increasing the infor-

mation available in polarisation imaging or optical data storage. Resolution of this

drawback requires solution of an integral equation with matrix-valued kernel (hence

yielding vector-valued basis functions), however analytic results have not yet been

forthcoming, despite the author’s efforts, and hence remains as future work. Nev-

ertheless, given the fast convergence of the developed series expansion and hence

the relatively few number of associated coefficients, numerical optimisation routines

can still be utilised without difficulty as has been illustrated using an EDF example.

Numerical optimisation can be further guided by the insights gained by the nature

of the basis functions. The expansion is furthermore still of significant use in appli-

cations in which the response of a system to each field component differs or needs

to be tailored.

Finally, in the closing chapters of this thesis, two specific examples of how po-

larisation can be utilised in current problems in optics was explored. Encoding data

into the orientation of asymmetrical pits was numerically modelled from which it

was determined that by measurement of the state of polarisation of the scattered

light it is possible to simply infer the orientation of a pit. It was found that elon-
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gated data pits act as near ideal optical diattenuators due to the differing phase

shifts introduced into the scattered x and y field components. Polarisation multi-

plexed optical data storage was thus seen to be a potential candidate for increasing

the data capacity of optical media. This novel multiplexed optical data storage so-

lution was further investigated by considering how the diattenuation of a pit could

be maximised, consequently maximising the storage capabilities of a MODS sys-

tem. Quantitative discrepancies with recent experimental results were found and

discussed, albeit qualitative agreement was seen. The exact sources of these differ-

ences still need to be resolved, however principally are believed to originate from

the assumption of perfect conductivity.

The second, and final example, examined exploiting polarisation properties of

light in single molecule studies. Given the typically low SNR ratios in single molecule

experiments and the consequent photon counting required, it was seen that stochas-

tic variations in the measured signal arising from both the discrete nature of light

and other potential source fluctuations can play equally important roles in measure-

ment accuracy. Again following the theme of orientational measurements, potential

reorientational changes of the single molecule (and the ensuing change in polari-

sation of radiated light) during the course of a time integrated measurement was

closely investigated, with both discrete and continuous orientational changes anal-

ysed. The associated PDF of the measured intensity was derived under general rates

of rotational motion and a closed form given for the limiting cases of fast and slow

orientational change. From such considerations appropriate regimes of dominant

noise were identified, which will be valuable in determining the correct estimation

protocols and noise analysis in single molecule experiments.

PDFs for both 2D and 3D rotational motions were derived, however determina-

tion of the longitudinal orientation of a single molecule, has, to date, been limited.

The possibility of making such longitudinal measurements however would offer sig-

nificant promise for full 3D polarimetry and biological research. Via consideration

of the symmetry and resulting constructive and destructive interference, a means of

doing so was identified and demonstrated rigorously. Experimental verification of

the results are still pending, however it was shown mathematically that by breaking

the symmetry in the back pupil plane of a simple 4f imaging system it is possi-
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ble to modify the on-axis polarisation in the image plane so as to depend on the

longitudinal dipole moment of the molecule. Accordingly a new three-arm DOAP

arrangement, employing a half beam phase mask, was proposed so as to measure the

full 3D orientation of a single molecule. Experimental tolerances of the setup were

also investigated. The system performance, whilst insensitive to pure rotational

misalignments of the phase mask, was found to deteriorate rapidly for translational

misalignments of more than approximately 10% of the pupil width, well within prac-

tical limits. Furthermore given the typical bandwidth of emission spectra of single

molecules only minor system degradation can be expected. Whilst other influences

were also investigated it was primarily found that good system performance could be

expected over a wide range of experimental conditions, however, since the proposed

system is dependent on tailoring the interference properties in the image plane, it

is more sensitive to phase perturbations, e.g. lens aberrations, than to amplitude

variations.

In closing it is perhaps appropriate to paraphrase Ernest Rutherford in noting

that there are two kinds of problems: impossible and trivial. All problems are

impossible until you solve them, at which point they become trivial. Perhaps the

most interesting things to come from this thesis are thus not necessarily the results

and tools developed, although it is certainly hoped that these prove useful and

interesting to others, but instead the questions that still remain unanswered and

the new problems posed. Such is the nature of science and the author would not

wish it any other way.
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Appendix A

Some information theoretic proofs

A number of results have been quoted from information and estimation theory

throughout the main body of this text. In this appendix, proofs for two such results

are given. Firstly, a derivation of the multivariate CRLB when estimating complex

parameters in the presence of bias is presented in Section A.1, since although the

author is confident this result is known, a suitable reference containing a proof for

such a general scenario appeared lacking. Secondly, in Section A.2 a derivation for

the multivariate BCRLB is presented since again an explicit proof is difficult to find

in the literature.

A.1 Multivariate Cramér-Rao lower bound for bi-

ased estimation

A bound is sought on the covariance matrix, Kw, of an estimate ŵ of the complex

parameter vector w. As such consider constructing a vector

v =

 ŵ − EX[ŵ]

sw

 , (A.1)
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where sw = (∂ ln fX(x|w)/∂w)† is the score vector and fX(x|w) is the likelihood

function for the noisy observations x as parameterised by w. Forming the correlation

matrix

EX

[
vv†
]

= EX

 (ŵ − EX[ŵ])(ŵ − EX[ŵ])† (ŵ − EX[ŵ])s†w

sw(ŵ − EX[ŵ])† sws†w

 ,
=

 Kw

(
I + ∂bw

∂w

)(
I + ∂bw

∂w

)† Jw

 , (A.2)

where the definition of the bias bw of an estimator, bw = EX[ŵ]−w has been used

and the FIM has been defined as

Jw = EX

[(
∂ln fX(x|w)

∂w

)†
∂ln fX(x|w)

∂w

]
. (A.3)

By virtue of being a correlation matrix, EX[vv†] is positive semi-definite implying

α†EX[vv†]α ≥ 0. Letting

α =

 β

−J−1
w

(
I + ∂bw

∂w

)†
β

 (A.4)

and evaluating the matrix multiplication yields

β†

[
Kw −

(
I +

∂bw

∂w

)
J−1

w

(
I +

∂bw

∂w

)†]
β ≥ 0 . (A.5)

Eq. (A.5) then in turn indicates that the matrix

Kw −
(

I +
∂bw

∂w

)
J−1

w

(
I +

∂bw

∂w

)†
(A.6)

is positive semi-definite, or equivalently

Kw ≥
(

I +
∂bw

∂w

)
J−1

w

(
I +

∂bw

∂w

)†
. (A.7)

Eq. (A.7) represents the CRLB for estimation of complex parameters in the presence
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of bias as quoted in Eq. (3.27).

A.2 Multivariate Bayesian Cramér-Rao lower bound

When estimating a deterministic parameter vector w from the random data vector

x, the FIM is defined as

Jw = EX

[(
∂ ln fX (x|w)

∂w

)†
∂ ln fX (x|w)

∂w

]
. (A.8)

If however w can vary, this definition becomes unsatisfactory since it does not

account for any a priori knowledge about the random nature of the parameter that

may be possessed and which can be used to improve the precision of any estimate

of w. Instead it is more appropriate to define the FIM in terms of the joint PDF of

X and W, namely fX,W(x,w) = fX(x|w)fW(w). Taking the logarithm gives

L(x,w) = ln fX(x|w) + ln fW(w) , (A.9)

so that the modified FIM is defined by

Jw =
2∑
i=1

2∑
j=1

EX,W

[
∂Li
∂w

†∂Lj
∂w

]
,

= J1 + J2 + J3 + J4 , (A.10)

where L1(x,w) = ln fX,W(x|w) and L2(w) = ln fW(w), and expectations are now

with respect to both X and W. Considering each of these terms in turn gives

J1 =

∫∫
∂L1

∂w

†∂L1

∂w
fX,W(x,w)dxdw ,

=

∫ [∫
∂L1

∂w

†∂L1

∂w
fX(x|w)dx

]
fW(w)dw ,

= EW [Jrw] , (A.11)

where EW[. . .] denotes the expectation with respect to W only and Jrw is the Fisher

information matrix as defined by Eq. (A.8).
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Adopting a similar treatment of J2 gives

J2 =

∫∫
∂L1

∂w

†∂L2

∂w
fX,W(x,w)dxdw ,

=

∫∫
fX,W(x,w)

fX(x|w)fW(w)

∂fX(x|w)

∂w

†∂fW(w)

∂w
dxdw ,

=

∫ [
∂

∂w

∫
fX(x|w)dx

]†
∂fW(w)

∂w
dw ,

= O , (A.12)

where O is a matrix of zeros, as follows from
∫
fX(x|w)dx = 1. A similar result

follows for J3. Finally consider

J4 =

∫∫
∂L2

∂w

†∂L2

∂w
fX,W(x,w)dxdw ,

=

∫
∂L2

∂w

†∂L2

∂w
fW(w)dw ,

= Japw . (A.13)

Combining these results finally yields

Jw = EW [Jrw] + Japw . (A.14)

It is thus evident that the FIM, when trying to estimate a random parameter W, is

given by the average of the Fisher information for a deterministic w, with respect to

W, plus an additional term arising from a priori knowledge of the random behaviour

of W.

As a final point of interest, note that if fW(w) is uniform then

∂ ln fW(w)

∂w
= 0 , (A.15)

such that Japw = O and Jw = EW [Jrw]. Furthermore if Jrw is not dependent on w

then Jw = Jrw.
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Special functions

B.1 Generalised prolate spheroidal functions

In this section various properties of generalised prolate spheroidal functions are

introduced and discussed. Although a number of different mathematical properties

are considered, derivations are omitted for brevity. Reference is however made to

the works of Slepian, Landau and Pollock [151, 152, 258, 260] where a full analysis

can be found. A summary of the key properties is provided in Table B.1.

B.1.1 Space-bandwidth product

All optical devices are incapable of perfectly transmitting signals with arbitrarily

high frequency content, but instead possess transfer functions which extend over a

finite range. The resulting transmitted signal thus has a finite bandwidth denoted Ω.

A bandlimited function cannot in itself also be space limited due to the uncertainty

principle, however it is possible to define a region of spatial extent r0 outside of

which the function is negligible or of little interest. The product c = r0Ω is then

called the space-bandwidth product and is often used as a measure of the optical

performance of a system [166, 204].
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The space-bandwidth product is important when discussing prolate spheroidal

functions since they are bandlimited functions whose form and behaviour is de-

pendent upon the parameter c. This explicit dependence is however occasionally

dropped in this work for clarity with the understanding that the dependence still

remains.

B.1.2 Eigenfunctions of the two dimensional finite Fourier

integral

It can be shown [258] that the eigenfunctions of the finite two dimensional Fourier

transform over a circular domain can be written in the form

ψN,n(c, r, θ) = ΦN,n(c, r)
cosNθ

sinNθ
, N = 0, 1, 2, . . . , n = 0, 1, 2, . . . , (B.1)

where ΦN,n(c, r), known as the circular prolate spheroidal functions, are the eigen-

functions of the N th order finite Hankel transform. The defining relation for these

functions can thus be expressed∫ r0

0

JN(ωr)ΦN,n(c, r)rdr = (−1)n
(r0

Ω

)
λ

1/2
N,nΦN,n

(
c,
ωr0

Ω

)
, (B.2)

where JN(· · · ) is the N th order Bessel function of the first kind, ω and r are conjugate

coordinates and λN,n are the circular prolate spheroidal eigenvalues. Figures B.1 and

B.2 show the behaviour of the eigenvalues and eigenfunctions respectively which are

further discussed in Section B.1.4.

It should be noted that the circular prolate functions ΦN,n used here are scaled

versions of those developed by Slepian, denoted ϕN,n, such that

ΦN,n(c, r) =

(
λN,n
rr0

)1/2

ϕN,n

(
c,
r

r0

)
. (B.3)

ϕN,n are also the solutions to the wave equation when expressed in a prolate spheroidal

coordinate system.
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Figure B.1: Circular prolate spheroidal eigenvalues for different orders (N and n) and
space bandwidth products c.
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Figure B.2: Circular prolate spheroidal functions for different orders n for N = 0 and
for different space bandwidth products c. Prolate functions plotted have been normalised
so that Φ0,0(0) = 1. Note the different vertical scales between plots.
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B.1.3 Orthogonality and completeness of the generalised

prolate spheroidal functions

Heurtley has shown [105] that the functions satisfying the integral equation (B.2)

are orthogonal and complete over the finite region 0 ≤ r ≤ r0, i.e.∫ r0

0

ΦN,n(c, r)ΦN,m(c, r)rdr = λN,nδnm (B.4)

and ∞∑
n=0

λ−1
N,nΦN,n(c, r)ΦN,n(c, r′) =

δ(r − r′)
r

for 0 ≤ r, r′ ≤ r0 , (B.5)

where δnm is the Kronecker delta and δ(r − r′) is the Dirac delta function centered

on r = r′. Furthermore the prolate functions possess the unique property that they

are also orthogonal and complete on the infinite interval 0 ≤ r ≤ ∞.

Noting that harmonic exponentials are also complete and orthogonal it is possible

to expand any two dimensional bandlimited function in terms of generalised prolate

functions

f(r, φ) =
∞∑

N=−∞

∞∑
n=0

AN,nΦ|N |,n(c, r) exp(iNφ) , (B.6)

where it has been elected to write ψN,n in terms of exponentials as opposed to the

trigonometric functions of Eq. (B.1) for mathematical convenience1. The coefficients

AN,n can be calculated using the orthogonality property whereby2

AN,n =
1

2πλ|N |,n

∫ 2π

0

∫ r0

0

f(r, φ)Φ|N |,n(c, r) exp(−iNφ)rdrdφ . (B.7)

1Use of exponential angular terms is in contrast to the sinusoidal basis used in Slepian’s original
work. Since a linear combination of eigenfunctions of an operator is not necessarily also an eigen-
function it is important to verify the eigenequation is still satisfied. This is fortunately easily done
by substitution of the basis functions Φ|N |,n(c, r) exp(iNφ) into a finite 2D Fourier transform.

2The observant reader will notice that the circular prolate spheroidal eigenvalues are now written
λ|N |,n as opposed to λN,n. The switch of index from N to |N | is required due to the shift from a
sinusoidal to an exponential angular term.
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B.1.4 Energy concentration property of generalised prolate

spheroidal functions

Given a bandlimited function the question may be asked as to how concentrated the

function can be in the spatial domain in terms of its energy distribution. This is of

particular interest in optics, for example when trying to improve the resolution in

an imaging system or to extend the depth of field where large sidelobe structures

are undesirable. Traditionally the encircled energy of a function f(r, φ) within a

circular region of radius r0 is defined as

Ienc =

∫ 2π

0

∫ r0

0

|f(r, φ)|2rdrdφ
/∫ 2π

0

∫ ∞
0

|f(r, φ)|2rdrdφ . (B.8)

Expansion of f(r, φ) by using Eq. (B.6) and subsequent substitution into Eq. (B.8)

gives

Ienc =
∞∑

N=−∞

∞∑
n=0

|AN,n|2λ|N |,n

/
∞∑

N=−∞

∞∑
n=0

|AN,n|2 , (B.9)

where the orthogonality condition (B.4) and the analogous equation for the infinite

interval (see for example [78] or Table B.1) have also been used. From Figure B.1 it

can be seen that the eigenvalues lie in the range 0 ≤ λ|N |,n ≤ 1 and monotonically

decrease with |N | and n and as such the encircled energy takes its maximum value

of Imax
enc = λ0,0 when

f(r, φ) = A0,0Φ0,0(c, r) . (B.10)

More generally the eigenvalue λ|N |,n is a measure of the fraction of energy con-

tained within the circular region defined by 0 ≤ r ≤ r0 and 0 ≤ φ < 2π [259].

This feature can be seen in Figures B.1 and B.2. Considering, for example, first the

c = 10 case it is noted that the eigenvalues drop off rapidly at n ∼ 3. As such when

the n = 0 order is plotted in Figure B.2 it is non-zero when r ≤ 0 and essentially

(although not precisely) zero outside. Higher order modes, n = 5 and 10, however

display the converse behaviour.

For the c = 20 case the eigenvalues remain close to unity up to higher orders

and instead decrease at n ∼ 6. When plotted the n = 0 mode displays the same

properties as before, but now the n = 5 mode shows contributions for all values of

275



Appendix B: Special functions

r considered. With an eigenvalue of 8.46 × 10−9 the n = 10 order again contains

negligible energy within the central region.

Finally considering the c = 40 case the eigenvalues do not fall off until n ∼ 13

meaning the plotted orders have only a small contribution for r ≥ r0.

Finite Hankel
transform
(definition)

∫ r0

0

ΦN,n(r)JN(ωr)rdr = (−1)n
(r0

Ω

)
λ

1/2
N,nΦN,n

(ωr0

Ω

)
Infinite Han-
kel transform

∫ ∞
0

ΦN,n(r)JN(ωr)rdr =

{
(−1)n

(
r0
Ω

)
λ
−1/2
N,n ΦN,n

(
ωr0
Ω

)
, ω ≤ Ω

0 , ω > Ω

Orthogonality
(finite spatial
domain)

∫ r0

0

ΦN,n(r)ΦN,m(r)rdr = λN,nδnm

Orthogonality
(infinite spa-
tial domain)

∫ ∞
0

ΦN,n(r)ΦN,m(r)rdr = δnm

Inverse finite
Hankel trans-
form

∫ Ω

0

ΦN,n

(ωr0

Ω

)
JN(ωr)ωdω = (−1)n

(
Ω

r0

)
λ

1/2
N,nΦN,n(r)

Inverse infi-
nite Hankel
transform

∫ Ω

0

ΦN,n

(ωr0

Ω

)
JN(ωr)ωdω =

{
(−1)n

(
Ω
r0

)
λ
−1/2
N,n ΦN,n(r) , r ≤ r0

0 , r > r0

Orthogonality
(finite fre-
quency
domain)

∫ Ω

0

ΦN,n

(ωr0

Ω

)
ΦN,m

(ωr0

Ω

)
ωdω =

(
Ω

r0

)2

λN,nδnm

Orthogonality
(infinite fre-
quency
domain)

∫ ∞
0

ΦN,n

(ωr0

Ω

)
ΦN,m

(ωr0

Ω

)
ωdω =

(
Ω

r0

)2

δnm

Table B.1: Summary of the properties of the spheroidal prolate functions with space-
bandwidth product c = r0Ω, for N ≥ 0 and n ≥ 0.
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B.2 Electromagnetic plane waves

B.2 Electromagnetic plane waves

Much reference has been given to electromagnetic plane waves during the course

of this thesis. In this section plane waves are derived as a solution of Maxwell’s

equations. The results given here will also be formulated in such a manner to allow

the field modes supported in a rectangular waveguide to be derived in Section B.3.

Consider Maxwell’s equations as given in Eqs. (4.1)–(4.4) and the wave equations

that follow (c.f. Eq. (4.8))

∇2E + k2E = 0 , ∇2H + k2H = 0 , (B.11)

where k =
√
εµω is the wavenumber in the medium. An exp(−iωt) time depen-

dence has been assumed throughout this work. These vector wave equations imply

that each component of the electric and magnetic field must satisfy the Helmholtz

equation individually. Since specialisation to a system with rectangular symmetry

is later made, the Helmholtz equation is considered in Cartesian coordinates and

solved using the technique of separation of variables [16]. The Helmholtz equation

can then be written

∂2Uj
∂x2

+
∂2Uj
∂y2

+
∂2Uj
∂z2

+ k2Uj = 0 , (B.12)

where Uj(x, y, z) = Xj(x)Yj(y)Zj(z) represents a single component of either the elec-

tric or magnetic field and the separation of Uj has been given explicitly. Substitution

of Uj in its separated form gives

1

Xj

∂2Xj

∂x2
+

1

Yj

∂2Yj
∂y2

+
1

Zj

∂2Zj
∂z2

= −(k2
x + k2

y + k2
z) , (B.13)

where k2 = k2
x + k2

y + k2
z . Since kx, ky and kz are constants, Eq. (B.13) can be split

into three uncoupled differential equations

d2Xj

dx2
= −k2

xXj ,
d2Yj
dy2

= −k2
yYj ,

d2Zj
dz2

= −k2
zZj , (B.14)
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which have the general solutions

Xj(x) = A+
j exp(ikxx) + A−j exp(−ikxx) , (B.15a)

Yj(y) = B+
j exp(ikyy) +B−j exp(−ikyy) , (B.15b)

Zj(z) = C+
j exp(ikzz) + C−j exp(−ikzz) , (B.15c)

A±j , B±j and C±j are constants of integration set by boundary conditions, an example

of which is discussed in Section B.3. In free space however no further constraints

apply and hence Eqs. (B.15) can be combined to give

E = E+ exp(ik · r) + E− exp(−ik · r) . (B.16)

Eq. (B.16) represents the summation of two counter-propagating plane waves (prop-

agating in directions defined by ±k).

B.2.1 s and p polarised plane waves

Further to Eq. (B.16), a plane wave is frequently decomposed into two distinct

polarisation components. Although the choice of decomposition is not unique, a

decomposition into plane waves possessing a zero longitudinal electric or magnetic

field component, so called s- and p-polarised waves, can prove expedient when solv-

ing plane interface problems, such as that considered in Chapter 7. Upon such a

decomposition Eq. (B.16) can be written

E =
∑
η=±

∑
ν=s,p

aη,ν Eν(k) exp(iη k · r) , (B.17)

or analogously for the magnetic field

H =
∑
η=±

∑
ν=s,p

aη,ν Hν(k) exp(iη k · r) , (B.18)
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where

Es(k) =



ωµ

2π
√
k2
x + k2

y


ky

−kx
0

 for k2
x + k2

y > 0 ,

ωµ

2π


0

−1

0

 for k2
x + k2

y = 0 ,

(B.19)

Ep(k) =



kz

2π
√
k2
x + k2

y

√
µ

ε


kx

ky

−(k2
x + k2

y)/kz

 for k2
x + k2

y > 0 ,

k

2π

√
µ

ε


1

0

0

 for k2
x + k2

y = 0 .

(B.20)

and

Hs(k) =



kz

2π
√
k2
x + k2

y


kx

ky

−(k2
x + k2

y)/kz

 for k2
x + k2

y > 0 ,

k

2π


1

0

0

 for k2
x + k2

y = 0 ,

(B.21)

Hp(k) =



k

2π
√
k2
x + k2

y


−ky
kx

0

 for k2
x + k2

y > 0 ,

k

2π


1

0

0

 for k2
x + k2

y = 0 ,

(B.22)

as follows from the curl equations (Eqs. (4.3) and (4.4)). Although arbitrary the

choice of normalisation has been chosen to follow [26]. As such s and p polarised
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plane waves satisfy the orthogonality relations3

〈Eν(k, r),Eν′(k′, r)〉 =

[(ωµ
2π

)2

δν,ν′δν,s +
µ

ε

(
|kz|
2π

)2

δν,ν′δν,p

]
δ(k− k′) , (B.24a)

〈Hν(k, r),Hν′(k′, r)〉 =

[(
|kz|
2π

)2

δν,ν′δν,s +

(
k

2π

)2

δν,ν′δν,p

]
δ(k− k′) . (B.24b)

B.3 Rectangular waveguide modes

Since the MODS data pits discussed in Chapter 7 are modelled as perfectly conduct-

ing, terminated rectangular waveguides in numerical simulations, a full derivation

of the associated waveguide modes is presented in this section. This will involve ap-

plication of the appropriate boundary conditions (introduced in Section B.3.1) and

Maxwell’s equations (performed in Sections B.3.2 and B.3.3 for transverse electric

and transverse magnetic field configurations).

B.3.1 Boundary conditions

In general the presence of a boundary between two different media gives rise to a

discontinuity in an electric or magnetic field incident upon it. Maxwell’s equations

can however be used to determine the difference in the fields between the two media.

This is given by

ε1E
⊥
1 − ε2E⊥2 = σf , E

‖
1 − E

‖
2 = 0 ,

µ1H
⊥
1 − µ2H

⊥
2 = 0 , H

‖
1 −H

‖
2 = Λf ,

(B.25)

where σf and Λf are the free surface charge and current density respectively and U⊥k

(U
‖
k ) denote the component(s) of the field in the kth medium that lie perpendicular

(parallel) to the boundary (see Figure B.3(a)). If the second medium is conducting

σf 6= 0 and Λf 6= 0 due to the free electrons in the conductor, however the field

amplitudes decay exponentially via the skin effect. For perfect conductors the skin

3The inner product of two vector fields is defined as

〈U1(x, y),U2(x, y)〉 =
∫ ∞
−∞

∫ ∞
−∞

U†1(x, y) ·U2(x, y)dx dy. (B.23)
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Figure B.3: (a) Electromagnetic field incident upon a conducting medium. (b) Cross
section through a rectangular waveguide.

depth is zero, that is to say there exists no internal fields, i.e. E2 = H2 = 0. Under

such conditions the electromagnetic boundary conditions simplify to

ε1E
⊥
1 = σf , E

‖
1 = 0 ,

µ1H
⊥
1 = 0 , H

‖
1 = Λf .

(B.26)

These boundary conditions are now applied to a rectangular waveguide configu-

ration, as shown in Figure B.3(b) in which the waveguide is assumed to have a width

of 2a (2b) in the x (y) direction and is centered on the optical axis. The permittivity

distribution is thus

ε(x, y, z) =

 ε1 for |x| ≤ a, |y| ≤ b

ε2 otherwise
. (B.27)

It is further assumed that both media are non-magnetic such that µ1 = µ2 =

µ0. When applied to the boundaries in between the waveguide core and cladding,

Eqs. (B.26) become

ε1Ex1 = σf , Ey1 = 0 , Ez1 = 0

Hx1 = 0 , Hy1 = Λf , Hz1 = Λf

 for |x| = a, |y| ≤ b , (B.28)
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and

Ex1 = 0 , ε1Ey1 = σf , Ez1 = 0

Hx1 = Λf , Hy1 = 0 , Hz1 = Λf

 for |x| ≤ a, |y| = b . (B.29)

Writing out Eqs. (4.3) and (4.4) component-wise in full gives

∂Ez
∂y
− ∂Ey

∂z
= iµωHx,

∂Hz

∂y
− ∂Hy

∂z
= −iεωEx , (B.30a)

−∂Ez
∂x

+
∂Ex
∂z

= iµωHy, −∂Hz

∂x
+
∂Hx

∂z
= −iεωEy , (B.30b)

∂Ey
∂x
− ∂Ex

∂y
= iµωHz,

∂Hy

∂x
− ∂Hx

∂y
= −iεωEz , (B.30c)

which upon letting Uj = U+
j + U−j where U±j (x, y, z) = Xj(x)Yj(y)C±j exp(±iκzz)

and various algebraic manipulations yields

Ex =
i

k2 − κ2
z

[
µω

∂

∂y
(H+

z +H−z ) + κz
∂

∂x
(E+

z − E−z )

]
, (B.31a)

Ey =
−i

k2 − κ2
z

[
µω

∂

∂x
(H+

z +H−z )− κz
∂

∂y
(E+

z − E−z )

]
, (B.31b)

Hx =
−i

k2 − κ2
z

[
εω

∂

∂y
(E+

z + E−z )− κz
∂

∂x
(H+

z −H−z )

]
, (B.31c)

Hy =
i

k2 − κ2
z

[
εω

∂

∂x
(E+

z + E−z ) + κz
∂

∂y
(H+

z −H−z )

]
. (B.31d)

It should be noted that so as to distinguish the waveguide mode propagation coef-

ficients from those of plane waves, the notation κ = (κx, κy, κz) is now used, where

κ · κ∗ = k2.

The importance of these equations lies in the fact that the field in a waveguide

can be decomposed into a summation of transverse magnetic (TM) and transverse

electric (TE) modes [122] defined respectively as having zero magnetic or electric

field in the propagation direction (taken as per normal convention as the positive z

direction). For TM modes, for which H+
z = H−z = 0, Eqs. (B.31) become

ETM
x =

iκz
k2 − κ2

z

∂

∂x
(ETM+

z − ETM−
z ) , (B.32a)

ETM
y =

iκz
k2 − κ2

z

∂

∂y
(ETM+

z − ETM−
z ) , (B.32b)
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HTM
x =

iεω

k2 − κ2
z

∂

∂y
(ETM+

z + ETM−
z ) , (B.32c)

HTM
y =

−iεω
k2 − κ2

z

∂

∂x
(ETM+

z + ETM−
z ) , (B.32d)

whilst for TE modes (E+
z = E−z = 0) they become

ETE
x =

−iµω
k2 − κ2

z

∂

∂y
(HTE+

z +HTE−
z ) , (B.33a)

ETE
y =

iµω

k2 − κ2
z

∂

∂x
(HTE+

z +HTE−
z ) , (B.33b)

HTE
x =

iκz
k2 − κ2

z

∂

∂x
(HTE+

z −HTE−
z ) , (B.33c)

HTE
y =

iκz
k2 − κ2

z

∂

∂y
(HTE+

z −HTE−
z ) . (B.33d)

Via Eqs. (B.32) and (B.33) it is hence possible to relate the transverse components

of a field to the longitudinal field component. Derivation of the waveguide modes

thus reduces to a derivation of the supported forms of the longitudinal electric and

magnetic field components.

B.3.2 Transverse magnetic (TM) modes

Consider first TM modes for which Hz1 = 0 for all (x, y, z). When the boundary

condition Ez1(±a, y) = 0 and Eqs. (B.15) are combined, the equation

0 =
(
A+
z e
±iκxa + A−z e

∓iκxa
) (
B+
z e

iκyy +B−z e
iκyy
) (
C+
z e

iκzz + C−z e
−iκzz

)
,

0 =
(
A+
z e
±iκxa + A−z e

∓iκxa
)
,

follows and hence

A+
z = −A−z exp(2iκxa) , (B.34a)

A+
z = −A−z exp(−2iκxa) . (B.34b)

Dividing these equations yields exp(4iκxa) = 1 such that

κx =
mπ

2a
m ∈ Z , (B.35)
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which upon substitution subsequently gives A+
z = (−1)m+1A−z . Letting A+

z = A = 1

without loss of generality, these results can be combined to give

Xz(x) =

 2Ai sin(κxx) for m even

2A cos(κxx) for m odd.
, (B.36)

which can be condensed into the single expression

XTM
zm (x) = [1 + (−1)m] i sin(κxx) + [1− (−1)m] cos(κxx) . (B.37)

Similarly, applying the boundary condition Ez1(x,±b) = 0 gives

Y TM
zn (y) = [1 + (−1)n] i sin(κyy) + [1− (−1)n] cos(κyy) , (B.38)

where κy = nπ
2b

for n ∈ Z. The longitudinal field component for a single TM mode

can thus be written

ETM
zmn(x, y, z) = {[1 + (−1)m] i sin(κxx) + [1− (−1)m] cos(κxx)}

× {[1 + (−1)n] i sin(κyy) + [1− (−1)n] cos(κyy)}

×
{
CTM+
z exp(iκzz) + CTM−

z exp(−iκzz)
}
, (B.39)

where mn denotes the mode indices. From Eqs. (B.32) the remaining field compo-

nents follow:

ETM
xmn =

iκz
k2 − κ2

z

(CTM+
z eiκzz − CTM−

z e−iκzz)
∂

∂x
XTM
zm (x)Y TM

zn (y) , (B.40a)

ETM
ymn =

iκz
k2 − κ2

z

(CTM+
z eiκzz − CTM−

z e−iκzz)XTM
zm (x)

∂

∂y
Y TM
zn (y) , (B.40b)

HTM
xmn =

−iεω
k2 − κ2

z

(CTM+
z eiκzz + CTM−

z e−iκzz)XTM
zm (x)

∂

∂y
Y TM
zn (y) , (B.40c)

HTM
ymn =

iεω

k2 − κ2
z

(CTM+
z eiκzz + CTM−

z e−iκzz)
∂

∂x
XTM
zm (x)Y TM

zn (y) , (B.40d)
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where

∂

∂x
XTM
zm (x) = [1 + (−1)m]κxi cos(κxx)− [1− (−1)m]κx sin(κxx) , (B.41a)

∂

∂y
Y TM
zn (y) = [1 + (−1)n]κyi cos(κyy)− [1− (−1)n]κy sin(κyy) . (B.41b)

Since if m = 0 or n = 0 then ETM
x = ETM

y = HTM
x = HTM

y = 0, the lowest TM mode

is the (m,n) = (1, 1) mode denoted TM11.

B.3.3 Transverse electric (TE) modes

Similar analysis can be performed for TE modes by applying the boundary condi-

tions Hx1(±a, y) = 0 and Hy1(x,±b) = 0 in turn. From Eqs. (B.33) these boundary

conditions imply

∂Hz

∂x
= 0 for |x| = a, |y| ≤ b , (B.42)

and

∂Hz

∂y
= 0 for |x| ≤ a, |y| = b . (B.43)

Following analogous manipulations as given in Section B.3.2 the longitudinal mag-

netic field component is given by

HTE
zmn(x, y, z) = {[1− (−1)m] i sin(κxx) + [1 + (−1)m] cos(κxx)}{

[1− (−1)n]BTEi sin(κyy) + [1 + (−1)n] cos(κyy)
}

×
{
CTE+
z exp(iκzz) + CTE−

z exp(−iκzz)
}
. (B.44)

From Eqs. (B.33) the transverse field components are found to be

ETE
xmn =

iµω

k2 − κ2
z

(CTE+
z eiκzz + CTE−

z e−iκzz)XTE
zm (x)

∂

∂y
Y TE
zn (y) , (B.45a)

ETE
ymn =

−iµω
k2 − κ2

z

(CTE+
z eiκzz + CTE−

z e−iκzz)
∂

∂x
XTE
zm (x)Y TE

zn (y) , (B.45b)
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HTE
xmn =

iκz
k2 − κ2

z

(CTE+
z eiκzz − CTE−

z e−iκzz)
∂

∂x
XTE
zm (x)Y TE

zn (y) , (B.45c)

HTE
ymn =

iκz
k2 − κ2

z

(CTE+
z eiκzz − CTE−

z e−iκzz)XTE
zm (x)

∂

∂y
Y TE
zn (y) , (B.45d)

where

XTE
zm (x) = [1− (−1)m] i sin(κxx) + [1 + (−1)m] cos(κxx) , (B.46a)

Y TE
zn (y) = [1− (−1)n] i sin(κyy) + [1 + (−1)n] cos(κyy) , (B.46b)

∂

∂x
XTE
zm (x) = [1− (−1)m]κxi cos(κxx)− [1 + (−1)m]κx sin(κxx) , (B.46c)

∂

∂y
Y TE
zn (y) = [1− (−1)n]κyi cos(κyy)− [1 + (−1)n]κy sin(κyy) . (B.46d)

To conclude this section the relationship between the constants CTE±
z and CTM±

z

that exists for a terminated waveguide is derived. It is assumed that the rectangular

waveguide is terminated by a perfect conductor at a depth D from the waveguide

entrance interface. Exploiting the resulting boundary condition E‖(x, y,D) = 0,

which must hold for each waveguide mode separately, and by evaluating Eqs. (B.40)

and (B.45) at the terminating surface (z = D) yields

0 =
iκz

k2 − κ2
z

(CTM+
z eiκzD − CTM−

z e−iκzD)
∂

∂x
XTM
zm (x)Y TM

zn (y) , (B.47a)

0 =
iκz

k2 − κ2
z

(CTM+
z eiκzD − CTM−

z e−iκzD)XTM
zm (x)

∂

∂y
Y TM
zn (y) , (B.47b)

0 =
iµω

k2 − κ2
z

(CTE+
z eiκzD + CTE−

z e−iκzD)XTE
zm (x)

∂

∂y
Y TE
zn (y) , (B.47c)

0 =
−iµω
k2 − κ2

z

(CTE+
z eiκzD + CTE−

z e−iκzD)
∂

∂x
XTE
zm (x)Y TE

zn (y) , (B.47d)

which reduce to

CTM−
z = CTM+

z e2iκzD , (B.48a)

CTE−
z = −CTE+

z e2iκzD . (B.48b)

Upon normalising such that Cµ+
z = 1 (µ = TE or TM), the Zµ

z (z) terms in the
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original separable solution to the wave equation (c.f. Eq. (B.15c)) become

ZTM
z (z) = 2 cos[κz(z −D)] , (B.49a)

ZTE
z (z) = 2 sin[κz(z −D)] , (B.49b)

where a global phase term exp(iκzD) has been dropped due to its physical insignif-

icance.

B.3.4 Orthogonality of waveguide modes

In a similar fashion to plane waves, it can be shown that the transverse field compo-

nents of the waveguide modes obey a number of orthogonality relations. To deter-

mine the normalisation constants required for solution of the set of linear equations

described by Eq. (7.18), the overlap integrals, or inner products, between modes

must be calculated. Although requiring tedious manipulations, analytic answers

can be found and are given by

〈ETM
‖mn,E

TM
‖pq 〉 =

∣∣∣∣ 2πκz
k2 − κ2

z

∣∣∣∣2 sin2 κzD

[
m2 b

a
+ n2a

b

]
δmpδnq , (B.50a)

〈ETE
‖mn,E

TE
‖pq〉 =

∣∣∣∣ 2πωµ

k2 − κ2
z

∣∣∣∣2 sin2 κzD

[
m2 b

a
+ n2a

b

]
δmpδnq , (B.50b)

〈HTM
‖mn,H

TM
‖pq 〉 =

∣∣∣∣ 2πεω

k2 − κ2
z

∣∣∣∣2 cos2 κzD

[
m2 b

a
+ n2a

b

]
δmpδnq , (B.50c)

〈HTE
‖mn,H

TE
‖pq〉 =

∣∣∣∣ 2πκz
k2 − κ2

z

∣∣∣∣2 cos2 κzD

[
m2 b

a
+ n2a

b

]
δmpδnq . (B.50d)

All other overlap integrals are identically zero.

B.3.5 Plane wave and waveguide mode coupling

Further to the orthogonality relations expressed in Eqs. (B.24) and (B.50), the

coupling strength between the transverse components of plane wave modes and

waveguide modes is required for solution of Eq. (7.18). Analytic expressions are
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again derivable and are given by

〈Es
‖(k),ETM

‖mn〉 =
iκzωµ

2π
√
k2
x + k2

y

sinκzD

k2 − κ2
z

[
ky κx χ

TM−
m,x χTM+

n,y − kx κy χTM+
m,x χTM−

n,y

]
,

〈Es
‖(k),ETE

‖mn〉 =
iω2µ2

2π
√
k2
x + k2

y

sinκzD

k2 − κ2
z

[
kx κx χ

TE−
m,x χ

TE+
n,y + ky κy χ

TE+
m,x χ

TE−
n,y

]
,

〈Ep
‖(k),ETM

‖mn〉 =
ikzκz

2π
√
k2
x + k2

y

√
µ

ε

sinκzD

k2 − κ2
z

[
kxκx χ

TM−
m,x χTM+

n,y + kyκy χ
TM+
m,x χTM−

n,y

]
,

〈Ep
‖(k),ETE

‖mn〉 =
ikzωµ

2π
√
k2
x + k2

y

√
µ

ε

sinκzD

k2 − κ2
z

[
kxκyχ

TE+
m,x χ

TE−
n,y − kyκx χTE+−

m,x χTE+
n,y

]
,

〈Hs
‖(k),HTM

‖mn〉 =
ikzωε

2π
√
k2
x + k2

y

cosκzD

k2 − κ2
z

[
kyκx χ

TM−
m,x χTM+

n,y − kxκyχTM+
m,x χTM−

n,y

]
,

〈Hs
‖(k),HTE

‖mn〉 =
ikzκz

2π
√
k2
x + k2

y

cosκzD

k2 − κ2
z

[
kx κxχ

TE−
m,x χ

TE+
n,y + ky κyχ

TE+
m,x χ

TE−
n,y

]
,

〈Hp
‖(k),HTM

‖mn〉 =
ikωε

2π
√
k2
x + k2

y

cosκzD

k2 − κ2
z

[
kxκx χ

TM−
m,x χTM+

n,y + kyκy χ
TM+
m,x χTM−

n,y

]
,

〈Hp
‖(k),HTE

‖mn〉 =
ikκz

2π
√
k2
x + k2

y

cosκzD

k2 − κ2
z

[
kxκy χ

TE+
m,x χ

TE−
n,y − ky κx χTE+−

m,x χTE+
n,y

]
,

where

χTM+
p,j = i [1 + (−1)p] sjp + [1− (−1)p] cjp , (B.52a)

χTM−
p,j = i [1 + (−1)p] cjp − [1− (−1)p] sjp , (B.52b)

χTE+
p,j = i [1− (−1)p] sjp + [1 + (−1)p] cjp , (B.52c)

χTE−
p,j = i [1− (−1)p] cjp − [1 + (−1)p] sjp , (B.52d)

and

cjp =

∫ L

−L
cos(κjt) exp[ikjt]dt ,

=



ip[1 + (−1)p]
kj

k2
j − κ2

j

sin kjL

+ip[1− (−1)p]
iκj

k2
j − κ2

j

cos kjL , kj 6= κj

L , kj = ±κj 6= 0

2L , kj = κj = 0

(B.53)

288



B.3 Rectangular waveguide modes

sjp =

∫ L

−L
sin(κjt) exp[ikjt]dt ,

=



−ip[1 + (−1)p]
iκj

k2
j − κ2

j

sin kjL

+ip[1− (−1)p]
kj

k2
j − κ2

j

cos kjL , kj 6= κj

∓iL , kj = ±κj 6= 0

2L , kj = κj = 0

(B.54)

where L = a (or b) for j = x (or y), respectively.
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[5] Ash, R. B., and Doléans-Dade, C. A. Probability and Measure Theory.

Elsevier Academic Press, USA, 1999.

[6] Azzam, R. M. A., and Bashara, N. M. Division-of-amplitude photopo-

larimeter (DOAP) for the simultaneous measurement of all four Stokes pa-

rameters of light. J. Mod. Opt. 29 (1982), 685–689.

[7] Azzam, R. M. A., and Bashara, N. M. Ellipsometry and Polarised Light.

Elsevier, North Holland, 1987.

[8] Azzam, R. M. A., and Sudradjat, F. F. Single-layer-coated beam split-

ters for the division-of-amplitude photopolarimeter. Appl. Opt. 44 (2005),

190–196.

[9] Balanis, C. A. Advanced Engineering Electromagnetics. John Wiley & Sons,

Ltd., New York, 1989.

291



BIBLIOGRAPHY

[10] Barankin, E. W. Locally best unbiased estimates. Ann. Math. Stat. 20

(1949), 477–501.

[11] Barrett, H. H., Denny, J. L., Wagner, R. F., and Myers, K. J. Ob-

jective assessment of image quality - II: Fisher information, Fourier crosstalk,

and figures of merit for task performance. J. Opt. Soc. Am. A 12 (1995),

834–852.

[12] Bartholinus, R. Experimenta crystalli islandici disdiaclastici quibus mira

& insolita refractio detegitur. Hafniæ, 1669.
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[211] Ojeda-Castañeda, J., Berriel-Valdos, L. R., and Montes, E. Spa-

tial filter for increasing the depth of focus. Opt. Lett. 10 (1987), 520–522.

[212] Oldenbourg, R. A new view on polarization microscopy. Nature 381 (1996),

811–812.

[213] Oldenbourg, R., and Mei, G. New polarized light microscope with pre-

cision universal compensator. J. Micros. 180 (1995), 140–147.

[214] Oldenbourg, R., and Török, P. Point-spread functions of a polariz-

ing microscope equipped with high-numerical-aperture lenses. Appl. Opt. 39

(2000), 6325–6331.

[215] Ossikovski, R. Analysis of depolarizing Mueller matrices through a sym-

metric decomposition. J. Opt. Soc. Am. A 26 (2009), 1109–1118.

[216] Palik, E. D., Ed. Handbook of Optical Constants of Solids. Elsevier Academic

Press, USA, 1998.

[217] Palma, C., and Cincotti, G. Imaging of j0 correlated Bessel-Gauss beams.

IEEE J. Quantum Elect. 33 (1997), 1032–1040.

[218] Parke, N. G. Optical algebra. J. Math. Phys. 28 (1949), 131.

309



BIBLIOGRAPHY

[219] Patra, D., Gregor, I., and Enderlein, J. Image analysis of defocused

single molecule images for three dimensional molecular orientation studies. J.

Phys. Chem. A 108 (2004), 6836.

[220] Patterson, G. H., Knobel, S. N., Sharif, W. D., Kain, S. R., and

Piston, D. W. Use of the Green Fluorescent Protein and its mutants in

quantitative fluorescence microscopy. Biophys. J. 73 (1997), 2782–2790.

[221] Penrose, R. A generalized inverse for matrices. Proc. Cam. Phil. Soc. 51

(1955), 406–413.

[222] Piestun, R., and Miller, D. A. B. Electromagnetic degrees of freedom

of an optical system. J. Opt. Soc. Am. A 17 (2000), 892–902.

[223] Pikas, D. J., Kirkpatrick, S. M., Tewksbury, E., Brott, L. L.,

Naik, R. R., Stone, M. O., and Dennis, W. M. Nonlinear saturation

and lasing characteristics of Green Fluorescent Protein. J. Phys. Chem. B 106

(2002), 4831–4837.

[224] Pike, R., Chana, D., Neocleous, P., and Jiang, S. Superresolution in

scanning optical systems, 1st ed. In Török and Kao [279], 2007, ch. 4.
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