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Abstract—Digital assays represent a shift from traditional
diagnostics and enable the precise detection of low-abundance
analytes, critical for early disease diagnosis and personalized
medicine, through discrete counting of biomolecular reporters.
Within this paradigm, we present a particle counting algorithm
for nanoparticle based imaging assays, formulated as a multiple-
hypothesis statistical test under an explicit image-formation
model and evaluated using a penalized likelihood rule. In contrast
to thresholding or machine learning methods, this approach
requires no training data or empirical parameter tuning, and
its outputs remain interpretable through direct links to imaging
physics and statistical decision theory.

Through numerical simulations we demonstrate robust count
accuracy across weak signals, variable backgrounds, magnifica-
tion changes and moderate PSF mismatch. Particle resolvability
tests further reveal characteristic error modes, including under-
counting at very small separations and localized over-counting
near the resolution limit. Practically, we also confirm the algo-
rithm’s utility, through application to experimental dark-field im-
ages comprising a nanoparticle-based assay for detection of DNA
biomarkers derived from SARS-CoV-2. Statistically significant
differences in particle count distributions are observed between
control and positive samples. Full count statistics obtained further
exhibit consistent over-dispersion, and provide insight into non-
specific and target-induced particle aggregation. These results
establish our method as a reliable framework for nanoparticle-
based detection assays in digital molecular diagnostics.

Index Terms—nanoparticle counting, digital molecular detec-
tion, dark-field microscopy, hypothesis testing, statistical signal
processing

I. INTRODUCTION

Next generation biological assays require very low limits
of detection; that is the ability to detect a few copies of
specific biomarkers (e.g. DNA strands) or pathogens (e.g.
virus particles) in large sample volumes, to enable confident,
accurate and early diagnoses. Digital assays, are an emerging
cheap and convenient approach that achieves the requisite
sensitivity by partitioning the sample and counting discrete
positive molecular detection events among partitions (which
maps directly to analyte abundance), rather than conventional
bulk assays which fit continuous readouts to calibration curves.
This fundamental digital counting principle can enable mea-
surements of extremely low analyte concentrations (attomolar
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to picomolar), whilst also simultaneously reducing dependence
on absolute calibration standards, which can suffer from
nonlinearity, temporal drift, and sensitivity to matrix and batch
effects [1], [2], [3]. In imaging-based digital assays, nanopar-
ticles or fluorophores can act as discrete reporters of analyte
presence. Whilst myriad protocols have been reported [4], [5],
[6], [7], [8], [9], [10], each fundamentally requires counting
the number of spot-like images of each reporter to provide
direct detection or calibration-free quantification of the target.
Accurate detection and counting of such localized features
in images, however, remain challenging, especially in high-
throughput digital diagnostics where low signal-to-noise ratios,
heterogeneous backgrounds, and the need to resolve dense
clusters of localized signals complicate reliable quantification.
Distinct imaging modalities used in digital assays (such as
dark-field, interferometric scattering or fluorescence imaging)
can furthermore introduce specific intricacies related to back-
ground inhomogeneity, unique noise profiles, and variability
in the point spread function (PSF) [11], [12], [13].
Localization, counting and tracking of spot like objects is
a common task, not only in diagnostic assays, but also in
fluorescence and superresolution microscopy, nanometrology
and astronomy. Spot detection methods have therefore been
developed and evaluated in earnest [14], [15], [16], [17].
As we discuss further in Section II, conventional approaches
often rely on filter and threshold based processing or, more
recently, machine learning (ML). Filtering and thresholding
based approaches however inherently introduce some degree
of arbitrariness that reduces reliability [17], [18], [19]. ML
methods, while powerful for biomedical image segmentation
[20], object recognition [21] and particle detection [22], typi-
cally require extensive annotated datasets and careful domain-
specific tuning, whilst also often producing outputs that are
difficult to interpret in terms of underlying image physics.
To address these challenges, we build on the successes of re-
cent statistical based approaches [23], [24], [25] and introduce
a physics-grounded alternative that treats particle counting as a
statistical decision problem under an explicit image-formation
model, in which each hypothesis corresponds to a distinct
particle count. Statistical decision theory is subsequently used
to select the hypothesis that best explains the observed image
[26] with an information-criterion style complexity correction.
This eliminates the need for empirical thresholds or training
data, directly links inference to measurable noise statistics and
optical parameters, and yields outputs that remain interpretable
in terms of physical imaging properties. In Section III we
describe the theoretical framework of our proposed algorithm
and its implementation. We further perform a comprehensive
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evaluation using simulated images (Sections III-B1) where
ground truth is precisely defined, hence enabling systematic
characterization across a wide range of imaging parameters.
From such benchmarking of detection performance we derive
practical strategies for optimizing acquisition settings (Sec-
tions IV-A and 1IV-B). To complement these results and
verify practical utility of our algorithm, we perform an ex-
perimental nanoparticle imaging assay closely approximating
SARS-CoV-2 genomic detection using stable DNA mimics
(Section IV-C). Clear statistically significant differences are
seen in particle count distributions providing robust analyte
detection. Together, these results establish the method as a
reliable tool for nanoparticle imaging diagnostic assays and a
principled framework for digital molecular detection.

II. RELATED WORK

Current approaches for spot detection can broadly be clas-
sified into more traditional computational filter based ap-
proaches, ML, and statistically informed methods. The former
typically consists of denoising, filtering and detection steps.
Initial image preprocessing aims to enhance the spots relative
to the background and noise. This often starts with basic
corrections, such as mean subtraction and flat field correction,
to account for camera-specific artifacts like dark currents [27],
[28]. Gaussian filtering can further provide basic smoothing
and noise reduction [29], [30], while more specialized filters,
for instance, Laplacian of Gaussian or difference of Gaussian
can improve spot contrast on non-uniform backgrounds [31],
[32]. Nonlinear or morphological approaches, notably median,
bilateral, top-hat and h-dome filters [30], [32], [33], [34] and
wavelet domain techniques [35], [36] have also been reported
to help isolate particle signals from noise. Particle localization
and segmentation methods are subsequently used to identify
candidate particle centers and boundaries. Localization is often
achieved via template matching or cross-correlation, using
a filter designed to match the expected imaging PSF (e.g.,
a Gaussian [37], corkscrew [13] or a V-shaped PSF [38]).
Segmentation relies heavily on thresholding, which can be
performed globally or adaptively (locally) [39]. Otsu’s method
is a widely used global approach for automatically determining
an optimal threshold [40]. More robust alternatives include
minimum entropy and probabilistic thresholding [41], [42].
Object refinement is sometimes also needed to help separate
clustered particles, a task often performed using techniques
like watershedding or h-dome transforms [34], [43], [44].

Increasingly, ML based approaches are being adopted across
the entire processing pipeline [45], [46], [47], [48]. For particle
localization and detection, ML models specifically move be-
yond more traditional thresholding to perform complex spatial
classification and regression. Many successful architectures
utilize variants of the convolutional neural network (CNN)
[49]. Examples include the weighted average convolutional
network (WAC-NET) [50], EfficientNET [51] and specialized
networks like SpotLearn [52], DetNet [53], detectSPOT [54]
and the deep consensus network [55] which aggregates pre-
dictions to enhance object detection accuracy. Segmentation-
focused architectures like mask R-CNN or networks employ-
ing variational splitting encoder-decoders have recently been

deployed [21], [22], [56]. U-Net architectures are also preva-
lent, used not only for pixel-wise semantic segmentation but
also for sophisticated regression tasks. For instance, Spotiflow
[57] reformulates spot detection as a multiscale heatmap and
stereographic flow regression problem, allowing the trained
U-Net to achieve sub-pixel accurate localization. A more
integrated strategy is seen in DENODET [58], a specialized
U-Net with a dual-decoder architecture that performs joint
denoising and detection simultaneously. Further architectural
developments include use of feature pyramid based networks
[59] or graph neural networks enhanced by attention-based
components [60], or morphology-guided kernel convolution
[61]. Reliance of these ML approaches on large, labeled
datasets, however, frequently presents a practical bottleneck,
stemming from the scarcity of high-fidelity experimental data
and the challenges associated with generating accurate ground-
truth annotations. Whilst this has driven efforts to develop
self-supervised methods for denoising or segmentation [62],
[63], [64], such techniques remain prone to artifacts and
hallucinations, and moreover perform poorly in low signal-
to-noise regimes where distinguishing stochastic noise from
faint targets is difficult without a physical prior.

A final category of methods, distinct from both filter and
ML-based methodologies, are algorithms based on probabilis-
tic models. Approaches rooted in statistical signal processing
are particularly effective in our particle imaging context, as
the underlying physics of image formation and the statistical
properties of the noise are well characterized and can hence
be explicitly modeled. Key examples include those based
on maximum likelihood estimation (MLE) [23] or general-
ized likelihood ratio tests (GLRT) for robust, threshold-free
detection [24]. Such statistical methods are also attractive
due to their ability to achieve statistically optimal precision.
Their performance is often benchmarked against the Cramér-
Rao lower bound (CRLB), which defines the fundamental
limit on localization precision for any unbiased estimator
[65], [66]. Unlike heuristic methods, MLE-based approaches
can be statistically efficient, asymptotically achieving this
bound [67], [68]. Furthermore, Bayesian approaches offer a
framework for integrating prior knowledge to handle model
uncertainty in single-molecule detection [25]. Such a model-
based paradigm is also particularly powerful, as it facili-
tates simple generalization to, for example, three-dimensional
single-molecule localization or orientational studies, in which
complex engineered imaging PSFs are used to encode addi-
tional particle properties [69], [70]. Our proposed algorithm
builds on these advantages and formulates particle counting
as a discrete multiple-hypothesis testing problem governed by
an information-theoretic complexity penalty. This offers ro-
bust, physics-interpretable counts without requiring extensive
training datasets as with ML strategies, or arbitrary parameter
tuning inherent to threshold and filter based methods.



III. METHODS

A. Particle counting algorithm
1) Analysis pipeline

To determine the number of particles in an image, we adopt
a multiple-hypothesis testing framework. Each hypothesis cor-
responds to a different particle count, and the associated model
is fitted to the data and evaluated using a penalized likelihood
score. We use MLE to fit model parameters under each
hypothesis, before selecting the hypothesis with the highest
score as the final particle estimate. The bespoke analysis
pipeline (written in Python and available publicly [71]) is
depicted in Figure 1 and consists of the following steps for
which further details are given in the subsequent sections:

1) Coarse peak detection: Identify candidate positions using
peak_local_max () from scikit-image.

2) Image segmentation: Large images are divided into
smaller sub-images whose size are chosen such that
average particle counts are low (~ 0 — 4).

3) Hypothesis Hy: For each sub-image under a hypothesis
of no particles present we estimate the background
level as the mean of all pixel values (the sole model
parameter), corresponding to the maximum likelihood
estimate.

4) Hypotheses Hi, Ho,...: For each sub-image, under a
hypothesis of n particles present (n € [1, ..., nmax), We
estimate the image background and particle parameters
(scattering strength and position) by maximizing the
associated (penalized) log-likelihood [,,, subject to a reg-
ulariser designed to constrain particle positions within
the image region.

5) All hypotheses: Compute the Fisher information matrix
M, and the penalized score

En =1y — %logdetM, (1)

for which the latter term serves as an information-
criterion style complexity correction [72], [73].

6) Count determination: The hypothesis with the largest
score &, is identified and the corresponding particle
count taken as the output, N of our estimation algorithm,

ie, N = arg max,, &, [26].

2) Image and data model

In this work we restrict attention to a dark-field imaging
setup (see Section III-C), whereby the image of a single parti-
cle will appear as a bright spot on a (ideally) low background.
We model the PSF for the imaging system as a normalized

Gaussian, i.e.,
2 2
exp (_w> , )
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where (z,y) are the image coordinates and o defines the PSF
width. Although choice of a Gaussian PSF is not rigorously
accurate, it enables significant computational gains whilst in-
curring minimal accuracy loss [37]. The model image intensity
I(x,y) on the detector plane when n particles are present is
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Fig. 1. Workflow of the particle detection algorithm. The input image
is tested against multiple hypotheses (Hq, H1, . .., Hn,,,), corresponding to
0 to mmax particles, each modeled as a sum of Gaussian PSFs on a uniform
background. For each hypothesis Hy, the algorithm determines the model
parameters by maximum likelihood estimation, computes a penalized log-
likelihood (£,) and Fisher information matrix (M) under the assumption
of Poisson noise. The corresponding scores &, = £ — %log det(M) are
then calculated. The hypothesis with the highest &, is selected, yielding the
estimated particle count N, background level, particle positions and scattering
intensities.

hence

n

I(@,y) =Ipc(z.y)+ Y I flx—ab, y—uf), @)
k=1

where I is the background intensity profile, and Iy, (2%, y})
are the amplitude and position of the k-th particle. Note that
the form of f(x,y) ensures that [ f(z,y)dzdy = 1, such that
the particle amplitude [ directly represents the total expected
intensity contribution from particle k.

Modern imaging setups employ pixelated detectors, i.e. a
camera. The total signal intensity captured by a single pixel j



on the camera is given by

N =Apa + > Iefi(ah, ub), (4)
k=1

where we have assumed the background signal A\pg is inde-
pendent of pixel across each of the small sub-images (although
may vary between sub-images), f;(z%,y}) = [ fQj flx —
z},y—yh)dzdy and ; denotes the spatial domain of the j-th
pixel. Henceforth we will express positions in terms of pixel
widths, such that 2, defines the domain {z,y||z — z;| <
1/2,ly — y;| < 1/2}. Each sub-image will be assumed to
have normalised coordinates such that {z,y| — 1/2 < z <
wy —1/2,-1/2 <y < wy — 1/2}, where w, and w, are
the dimensions of the sub-image (in pixels). The fraction of
the total scattered signal from a particle falling onto a single
detector pixel depends on the relative alignment of the PSF to
the pixel array. For later convenience we define the maximum
fraction (corresponding to when the PSF is centered on a pixel
- see Supplementary Material for further detail) to be fi.x.

3) Penalized log-likelihood function

We assume that noise present on the model image intensity
follows a Poisson distribution (with mean equal to the model
value, i.e. Eq. (4)), since for small weakly scattering nanopar-
ticles, the photon count per pixel is low. Operation in such a
quantum noise limited regime is routinely achieved in single
particle and fluorescence imaging [17], [18]. Assuming that
noise in each pixel is independent, the likelihood function is

therefore
M )\;{j e~ N

L(V|A) = HT’ (5)

=1 7

where M is the total number of pixels in a given sub-
image, v = [v1,v9,...,vp] is the (vectorized) image data
composed of the observed intensities v; at each pixel j, and
A =[A1,A2,..., Ap] is the expected image intensity.
Neglecting the model independent }_ ; log(v;!) term we can
form the log-likelihood function
M
06) = [v;log A;(0) — A;(8)], (6)

J=1

where @ = [Apg, 1, 1,91, - - -, In, Tn, Yn) denotes the vector
of model parameters to be found (i.e., background intensity,
particle positions and scattering strengths).

To prevent particle position estimates from drifting outside
the image boundary, we add a regularizer P(0) to the log-
likelihood. The resulting penalized objective is

0,(0) = 0(0) — aP(0), (7
where P(0) = Eszl[Px(xi) + Py (yz)], and

(t+0.5)4 t < —0.5,
Ps(t) =4 (t —ws +0.5)7 ¢ >ws —0.5, (8)
0 otherwise.

The penalty P(0) is thus zero when all particle positions
lie within the valid region, and is activated only if a fitted

position crosses the image edge. Note that, ¢ and « are free
parameters that can be selected by the user. Our choice of a
polynomial penalty yields smooth first and second derivatives.
The solver (see below) could hence be provided with closed-
form expressions for the Jacobian vector (J) and Hessian
matrix (H) of —¢,(6) with respect to € to help ensure stable
convergence. Full expanded expressions for J and H are
included in the Supplementary Information.

4) Maximum likelihood estimation

To find the maximum likelihood estimate of the model
parameters @ we numerically maximize the penalized log-
likelihood function (Eq. (7)) using a Newton-type optimizer.
Specifically we supplied —¢,(#) to SciPy’s trust-exact
minimizer so as to maximize ¢,(#). For our study we choose
a = 10° to match the scale of our modeled signal intensities
and provide rapid convergence. A cubic penalty, ¢ = 3, was
chosen because its gradient increases quadratically with dis-
tance outside the image boundary, such that larger excursions
are corrected more aggressively than a more conventional
quadratic penalty. This helps to prevent the minimizer from
lingering outside the valid region for too many iterations if a
large step is taken.

5) Hypothesis testing

We consider a range of hypotheses, H,, for n =
0,1,...nma, Where H,, assumes an image contains n par-
ticles. For each hypothesis, MLE of the model parameters 6
is performed as described above and the penalized score, given
by Eq. (1) calculated. For all tested hypotheses, we assign a
score according to

=1, — %log det (M). 9)

The 3logdet (M) penalty term represents an information-
criterion style complexity correction applied to guard against
overfitting in higher order hypotheses which possess more de-
grees of freedom [72], [73]. This penalty term is based on the
minimum description length principle, which is asymptotically
equivalent to the referenced Bayesian information criterion
(BIC) and provides a rigorous foundation for balancing model
accuracy with complexity [26]. The hypothesis found to pos-
sess the greatest score &, is selected as the resulting estimate
N = arg max,, &, of the true underlying particle count V.
The maximum number of particles to consider, nmax, can be
set dynamically, e.g., based on identification of turning points
in &, as a function of n. Alternatively, as in the case of our
study, nmax can be set statically based on a priori estimates
of mean particle densities. In particular, for an (estimated)
average particle density N we can select 7, such that
Nmax ATk
PN(N > npax) = 1 — o exp[—N] < g,

k=0

(10)

i.e., the probability that the actual count of particles is larger
than ny.x (assuming a Poisson point process) lies below some
threshold €. Note that when the true count V is greater than
nmax We empirically observed that the corresponding particle
count was estimated as mp,. Theoretically, this would be



expected because the likelihood increases with increasing n
for n < N.

6) Initialization strategy

Suitable parameter initialization (i.e. of @) is important for
stable convergence in our MLE. To this end, we set the initial
parameter values as follows:

o Background: A\pg, the uniform background intensity, is

initialized as the minimum pixel value in the image.

« Particle intensities: I, = AI - 2r0? for all candidate
particles, where AT = max(v) — min(v).

« Particle positions: (2}, y ) are taken from peaks identified
by peak_local_max (), ordered by descending peak
intensity, up to the assumed number of particles n in the
current hypothesis.

B. Synthetic image sets for performance evaluation

Synthetic image data provide a uniquely controllable testbed
for evaluating the performance of our algorithm since ground-
truth parameters, including the particle numbers, are known
exactly. By benchmarking algorithm results against fully
defined ground-truth datasets, we can directly quantify the
algorithm’s accuracy under systematically varied conditions.
In this vein we performed two types of parametric performance
studies to analyze the counting accuracy and resolvability of
particles respectively.

1) Counting accuracy test set

We generated a set of 100 x 100 pixel (sub-)images con-
taining 0 to 4 particles to test our detection algorithm. For
each particle count, we created a stack of 10,000 images
using a predefined PSF width, background level, and particle
intensity. Particles were randomly distributed within the image.
To isolate the effects of imaging parameters on algorithm
performance relative to boundary effects, particle positions
were restricted to regions in which the full PSF fell within the
image. Pixel values were generated by Poisson sampling from
the expected model intensity, thereby capturing fundamental
photon shot noise inherent in optical detection [65], [74], [75].

Baseline simulated imaging conditions are summarised in
Table 1. Relative to these baselines values we generated further
image sets for variations in the particle scattering intensity
I, (assumed the same for all particles) and pixel background
ABa, which were sampled logarithmically in the ranges 1/64 x
to 8x and 1/2x to 2048 respectively. Noting that the signal-
to-background ratio (SBR) is here defined as

Iy, finax
SBR = ’“fma, (11)
ABG
TABLE 1

BASELINE PARAMETER VALUES USED FOR GENERATION OF SIMULATED
IMAGE DATASETS.

[ Parameter [ Symbol | Baseline |
Image dimensions we = wy | 100 pixels
PSF width o 2 pixels
Background count ABG 2000
Particle scattering intensity Iy 20, 000
Signal-to-background ratio SBR ~ 0.39
Signal-to-noise ratio SNR ~ 14.8

the variation in I directly corresponds to variation of the SBR
from 1/64x to 8x the baseline value of ~ 0.39. Meanwhile,
changes in Apg correspond to variation of the SBR from 2x
to 1/2048 % baseline.

To quantify the effect of the signal-to-noise ratio, defined
here as

kamax
V kamax + )\BG7

to reflect the Poisson distributed detection noise, we generated
further synthetic images in which both the particle intensity
and the background level are multiplied by a common scale
factor s. This preserves the SBR ratio while increasing the
absolute photon counts per pixel and the SNR by a factor
of y/s. Scaling factors (again logarithmically spaced) ranging
from 1/16 to 8, corresponding to relative SNRs of 1/4 to 2V/2
were chosen.

Finally, we also generated two further test image sets
corresponding to different optical magnifications. As imaging
magnification increases, we assume PSF spreads across more
pixels while conserving the total photon signal. Accordingly,
the peak pixel intensity decreases while the integrated signal
per particle is unchanged. The two distinct datasets compared
two background models: type I, an optical background that
dilutes with magnification in the same way as the signal (x
1/ magnification?), and type I, a static non-optical background
that is independent of magnification. Physically, the type I
model is more applicable when the background signal arises
from the sample or illumination optics (e.g. background fluo-
rescence or stray light), whereas the magnification independent
type II model describes signals originating at the detector, such
as thermal counts and read-out noise.

SNR = (12)

2) Particle resolvability test set

Optical imaging systems are intrinsically limited in res-
olution due to the diffraction of light. Consequently the
image of two closely spaced point-like objects differs only
marginally from that of a single particle. Although in a noise-
free system two point objects can theoretically be resolved
down to infinitely small separations, e.g., by deconvolving the
image with the known imaging PSF, in reality, two closely
spaced particles can be difficult to discriminate since noise
limits the minimum detectable intensity difference. To study
the ability of our algorithm to resolve closely spaced particles
in the presence of noise, we generated an additional set of
100 x 100 pixel images containing exactly two particles, with
inter-particle distance, d, ranging from O to 60 in increments
of 0.20. The assumed PSF width o was additionally varied
from 1 pixel to 41/2 pixels. For each distance and PSF width
combination, 10,000 images are produced. The inter-particle
orientation was randomized for each image, and the centroid
position was placed uniformly at random within +0.5 pixels
of the image center along both axes to remove any pixel-array
alignment effects, such as informational oscillations or biases
[76]. Note, that we also held the SBR constant for different
PSF widths through appropriate scaling of particle scattering
strength.



C. Experimental image set
1) Dark field imaging setup

To evaluate the algorithm under real imaging conditions,
we applied it to a dark-field microscopy dataset of metallic
nanoparticles. We illuminated the nanoparticles using broad-
spectrum LEDs (Cree C503D-WAN, 40k mcd intensity) at a
large oblique angle, such that only the scattered light was col-
lected by a low-magnification microscope objective (Olympus
LUCPlanFL. N 20x, 0.45 NA) and the image subsequently
projected onto a color RGB camera (Teledyne FLIR Grasshop-
per 3, GS3-U3-89S6C-C, Sony IMX255 sensor). Piezo stages
(Thorlabs PD2/M 5 mm Linear Stage with Piezoelectric Inertia
Drive) allowed us to automate the system and capture multiple
images at distinct sample regions.

2) Coronavirus assay

We attempted to approximate genomic RNA detection by
mixing two single-stranded DNA (ssDNA) sequences; a 188-
bp ssDNA (“E-DNA”) derived from SARS-CoV-2 Envelope
gene (E gene) or a 200-bp ssDNA (“N-DNA”) from SARS-
CoV-2 Nucleocapsid gene (N gene). When the ssDNAs bind
to nanoparticles with complementary DNA handles, it leads
to the formation of nanoparticle clusters. Following [61] we
used a mixture of nanoparticles in this experiment; gold-
shell silica-core nanoparticles (80 nm diameter silica + 20 nm
thick Au shell), 25 nm radius spherical gold nanoparticles
and 25 nm radius spherical silver nanoparticles respectively.
Details about the surface functionalization can be found in
the Supplementary Information. The nanoparticles were mixed
with a buffer formulated to reduce non-specific aggregation,
after which the target DNA (or blank buffer) was added at
a concentration of 10 pM. The samples were briefly heated
for 15 min at 50 °C before transfer to a home-made imaging
chamber for dark-field imaging. We considered three distinct
concentrations, specifically

1) Low: Au nanoshell: 0.3 pM, Au and Ag spheres: 1.5 pM

each. Total: 3.3 pM.

2) Medium: Au nanoshell: 0.6 pM, Au and Ag spheres:

3 pM each. Total: 6.6 pM.
3) High: Au nanoshell: 1.2 pM, Au and Ag spheres: 6 pM
each. Total: 13.2 pM.
Note that since the nanoparticle samples used comprised
of a mixture of different species possessing distinct scatter-
ing cross-sections, we consequently introduced inter-particle
variability in [Ij, thereby providing an additional test of the
robustness of our algorithm. In principle, the distinct spectral
response of each nanoparticle species can provide additional
information about the content of observed clusters, however,
we did not exploit such spectral information in this study.

IV. RESULTS AND DISCUSSION
A. Counting accuracy

This section describes the performance of our proposed
hypothesis based particle counting algorithm based on six
parametric studies using synthetic datasets. Specifically, we
varied particle scattering strength, image background intensity,
relative SNR and optical magnification (type I and type II), as

Estimated value N
0 1 2 3 4

ot

=} 0.9998 0.0002 overtcount

0.9996 0.0002

0.0003 0.9992 0.0005

True value N
2

3] 0.0004 0.9992 0.0004

<t ‘ 0.0005

Fig. 2. Baseline confusion matrix. Confusion matrix for the particle
count estimation algorithm under baseline simulation conditions (Table I),
illustrating the probability of the estimated count /N (columns) given the true
count N (rows). Strong diagonal dominance is evident reflecting minimal
over- or under-counting.

0.9994

described in Section III-B1. Additionally, using the baseline
imaging dataset, we varied the width of the PSF used in model
fitting relative to the true underlying PSF. For each ground-
truth particle count N, we recorded the relative frequency
I/N(N ) of each estimated particle count, N, output as a
confusion table (the baseline confusion table is presented in
Figure 2, with further examples provided in the Supplementary
Information) where ) vn(N) = 1. Although our datasets
contained images with a maximum of four particles, hypothe-
ses up to Hy were tested to help us assess any tendency
of the algorithm to over-count. Such misclassifications were
negligible, confirming that the algorithm does not spuriously
inflate counts under the tested densities.

To reflect the distribution of expected counts inherent in
a Poisson counting process, we evaluate overall algorithm
performance using a weighted accuracy defined as

A= pn(N;N)vy(N),

N=0

13)

where py(IN; N) is the Poisson probability mass function for
N particles with mean N, vy (N) is the fraction of correct
predictions and the summation is performed over the leading
diagonal of the confusion matrix (blue boxes in Figure 2). An
unweighted accuracy, in contrast, treats rarer high-count cases
as equally important as common low-count ones, ignoring the
fact that counts near the mean occur far more often in prac-
tice. Adopting a weighted approach, moreover, allows us to
realistically assess algorithm performance for differing particle
densities by adjusting the relative weights in the averaging
process. Specifically, we report results for three choices of
N (0.25,0.5, and 1.0 particles per image). In so doing, we
can gain extra insight into algorithm performance. If, for
example, errors are concentrated in lower-count cases (e.g.,
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PSF width mismatch

Weighted accuracy under simulated conditions. Weighted accuracy (solid lines), over-count rate (dashed) and under-count rate (dotted) versus (a)

particle scatterong strength, (b) background intensity, (c) relative SNR at fixed SBR, (d) magnification (type I), where both signal and background scale as
1/ magnification? (optical stray-light—-dominated), (¢) magnification (type II), where background remains constant (sensor/electronic-noise—dominated), and (f)
the ratio of the assumed PSF width used in MLE to the true PSF width. Each panel shows results for average particle densities per image (N) of 0.25 (blue),
0.5 (orange), and 1.0 (purple). Each point aggregates outcomes from 10,000 test images per true count (0—4). Baseline conditions are given in Table I and

depicted by vertical dashed gray lines. Hypotheses up to five particles were evaluated in all cases.

N = 0 or 1), then the lower-density test (e.g., N = 0.25) will
show lower weighted accuracy than a higher-density test (e.g.,
N = 1.0), since low counts dominate the Poisson mix at small
N. Conversely, if errors arise mainly at higher counts (say
N > 2), weighted accuracy will decline as N increases. In
this way, the trend of accuracy versus NN indicates which count
regimes contribute most to errors. We also similarly define
weighted over-count and and under-count rates corresponding
to Poisson weighted sums over the purple and green regions
depicted in Figure 2. Summary plots of the resultant weighted
performance metrics are given in Figure 3.

1) Effect of particle scattering strength

Figure 3(a) shows the observed weighted accuracy (solid
lines) as a function of scatterer strength [ with the back-
ground held fixed at 2,000 and o0 = 2 pixels, along with
the weighted over-count (dashed) and under-count (dotted)
failure rates. At the shared baseline condition (I, = 20,000 for
all particles k), weighted accuracy is essentially 1.0, serving
as the high-quality reference. Reducing scatterer strength de-
creases the per-particle intensity while the background remains
unchanged, which lowers the peak-pixel fraction relative to
background. For ¢ = 2 pixels the central pixel contains at
most fiax =~ 3.90% of the particle intensity (see Supporting
Information). This corresponds to at most 780 counts at 1x,
390 counts at 1/2x, and 195 counts at 1/4x, all against a

background mean of 2,000. Despite the central pixel being
less than 10% of the background in the 1/4x case, accuracy
remains essentially unity down to this regime and only begins
to deteriorate for weaker scattering, where a rise in under-
count rate is evident. The plateaus on the far left of Figure 3(a)
correspond to regimes where the algorithm predicts zero
particles for nearly all images, that is to say when Eq. (13)
reduces to A = py(0; N) = exp(—N), corresponding to
~ 0.368, 0.607 and 0.779 for means of 1, 0.5 and 0.25
respectively.

2) Effect of background level

In Figure 3(b) it is observed that weighted accuracy de-
creases monotonically with increasing background signal Ap¢.
At the baseline background of 2,000 counts, accuracy is
again essentially unity, however, as the background rises,
the peak-to-background ratio shrinks and accuracy steadily
declines. When the background reaches approximately 128x
the baseline, the usable contrast is so low that the estimator
effectively toggles between the background-only (N = 0) and
single-particle (N = 1) models; predictions with N > 2 do
not occur in this regime (see the Supplementary Information
for supporting confusion matrices and further discussion).

Reducing scattering strength and increasing background
both lower the SBR. In our simulations, the weighted accuracy
in Figure 3(a) remains near the baseline down to ~ 1/4x



particle scattering strength I, (SBR reduction of ~ 4), whereas
in Figure 3(b) a visible decline appears at 2x baseline back-
ground (SBR reduction of 2). Given the two parametric studies
probe distinct parameter regions, similar SBR ‘thresholds’
would not be expected.

3) Effect of SNR

When scaling both particle intensity and background by a
common scale factor s (see Section III-B1), thereby fixing
SBR whilst scaling SNR by /s, we observe that the weighted
accuracy is essentially unity across a broad range of scale
factors (see Figure 3(c)). At very large s, however, accuracy
shows a modest but reproducible decline. This behavior is
counterintuitive since one might expect that ever-higher SNR
should only improve detection. Instead, the elevated photon
counts amplify the absolute magnitude of Poisson fluctuations,
which can generate spurious maxima resembling weak narrow
PSFs. The dominant error mode is misclassification of true
N = 0 images as possessing a single particle (N =1
as reflected in the increasing over-count rate. Thus, while
performance remains robust across most of the tested range,
extremely high SNR introduces fluctuation-driven artifacts that
offset the expected gains. This response reflects algorithm-
specific sensitivity to the structure of the likelihood surface.

4) Effect of system magnification

Under type I conditions varying magnification of an imaging
system affects both the PSF width (thereby affecting per-pixel
counts of scattered photons) and the background level. We find
that in this case weighted accuracy remains constant across a
range of PSF widths from ~ 1/ V2 to ~ 2x the baseline,
but then reduces at both lower and higher magnifications (see
Figure 3(d)). This trend is consistent with results found in
single molecule localization studies, which demonstrated that
in ideal conditions localization precision can be magnification
independent, but pixelation and noise impose a practical op-
timum [65]. At low magnification the (narrow) PSF is under-
sampled, which in our tests primarily produced rare misclas-
sification of true N = (0 images as N =1, ie. false positives
exhibiting as over-counting (see Supplementary Information
for corresponding confusion matrices). On the other hand, at
high magnification, the PSF spans many pixels. The increased
number of pixels, combined with larger noise fluctuations can
produce spurious maxima which are subsequently identified as
additional particles (over-counting). Moreover, when multiple
particles are present, broader PSFs can result in significant
spatial overlap such that close particle pairs are not clearly
resolved (again due to noise) and hence are only counted
as a single particle (weak under-counting). Note that the
latter primarily affects larger N cases and therefore does
not significantly affect the weighted under-count rate, but
is more evident in the corresponding confusions tables (see
Supplementary Information).

Under type II conditions (variable PSF width, but fixed
background intensities), weighted accuracy stays high at mag-
nifications up to ~ 2x baseline, but drops once magnification
is large enough that the fixed background becomes significant
relative to the diluted per-pixel signal (Figure 3(e)). This is

analogous to the readout-noise-dominated regime discussed
in [65], where increasing magnification spreads the signal
without reducing the fixed noise floor. No decline in accuracy
is seen at smaller PSF widths (lower magnifications).

Realistically, both type I and type II type backgrounds are
likely to be present in an imaging system, such that a practical
magnification window is expected. The lower end of this
window is determined by type I effects, whilst the the upper
end is dictated by both type I and II effects. The dominant
factor at high magnifications will depend on whether SBR or
SNR limit performance whereby either the fixed noise floor
penalizes very high magnification or large noise fluctuations
produce spurious maxima and degrade particle resolvability
respectively. Empirically, we therefore note that best perfor-
mance is obtained when the PSF spans approximately 2-4
pixels, which is consistent with behaviour reported in the
literature [77].

5) Effect of PSF mismatch

The analysis presented thus far assumed that the PSF width
used in analysis matched the true PSF width o. Precise deter-
mination of the true PSF width may be practically difficult
and so we also evaluate the performance of the counting
algorithm under baseline conditions albeit with a mismatch in
the model PSF used in our MLE relative to the true 0. The PSF
mismatch was varied from 1/ V8x to 24/2x the baseline truth.
Figure 3(f) shows that such PSF mismatch affects weighted
accuracy across the entire simulated parameter range. Perfor-
mance tended to plateau when the analysis PSF was narrower
than the true one, while it dropped off more sharply when the
analysis PSF was broader, a trend that would likely continue
beyond the tested range. In both cases the principal failure
mode was over-counting. Nevertheless, declines in accuracy
were limited and notably approximately independently to NNV,
hence demonstrating that the method is relatively insensitive
to such PSF discrepancies.

B. PFarticle resolvability

As discussed in Section III-B2 a common problem en-
countered in image based particle counting is the need to
resolve two particles that lie in close proximity to each other.
This behaviour is similarly, unavoidable in our approach and
is manifest as potential under-counting of particle numbers
(which we shall term coincidence loss). Figure 4 shows the
results of analysis of the dataset described in Section III-B2
using our hypothesis-based algorithm. Specifically, the relative
frequency of each selected hypothesis (i.e., the determined
particle count) is presented as a stacked plot as a function
of the ground-truth particle separation d (normalized to PSF
width o). Initially considering Figure 4(a), we observe a sharp
crossover behavior whereby at larger separations (2 3o or
equivalently 2> 3 pixels in this case) two particles are correctly
discriminated, however at small separations the estimator
predominantly under-counts (i.e., H; wins over Hs in the
scoring, meaning two particles are reported as one). We define
the transition point, or resolution threshold, as the separation
corresponding to where the fwo particle count drops to 50%
of the total as is indicated by the vertical gray dashed line in
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Fig. 4. Two-particle resolution. Stacked plot for the fraction of estimation
outcomes N for a true two-particle image (N = 2), as a function of
normalized separation for PSF widths of o = 1 (top panel), v/2, 2, 2v/2, 4
and 4+/2 pixels (bottom), each aggregated over 10,000 simulations. At large
separations, correct two-particle estimates dominate. At small separations,
under-counting is the primary error mode. Over-counting arises only near
the transition region. Example particle images at the resolution limit (vertical
dashed line corresponding to the fraction of N = 2 estimates falling to
50%), for each PSF width are also shown. White arrows on inset denote
corresponding threshold separation.

Figure 4(a). As the PSF width (o) is increased (panels (b)—
(f)), the normalized threshold separation is seen to shift to
smaller multiples of o, whilst the absolute threshold separation
naturally increases as would be expected (see Supplementary
Information). We attribute the ability of our algorithm to better
resolve relatively closer pairs when the PSF is broader, to

the fact that for wider PSFs information about each particle
is encoded in more pixels, each of which, in the Poisson
noise regime, individually exhibits a better SNR. Accordingly
smaller image differences can be discerned enabling better
resolvability. It should however be noted that for broader PSFs,
the transition behavior is more complicated than a crossover
between the estimator choosing H; or Hs. In particular, since
PSFs are spread over multiple pixels, noise can introduce
spurious maxima, as seen with the counting accuracy tests,
which are misclassified as multiple particles. Indeed, spurious
maxima become more problematic in the resolution tests
than in the earlier accuracy tests, since the presence of two
overlapping PSFs generates larger scattered intensities than
the single particle case, such that intensity variance on each
pixel is similarly larger. Such over-counting can be seen in
Figure 4(d)—(f) in which small contributions from 3, 4 and
5 particle estimates are seen. Overall, the algorithm however
predominantly fails conservatively, underestimating rather than
inflating counts, with over-counting restricted to the transition
region. These error patterns are consistent with the general
challenges documented in localization reviews [19], where
overlapping emitters and high background levels are recog-
nized as primary obstacles.

Finally, we note that at the densities used in our image
datasets (N = 0.25,0.5 or 1), the probability of any particle
overlap in a random image is only ~0.3%. Even when
restricting consideration to images with at least two particles,
the probability of overlap remains ~1.1% (See Supplementary
Information for a derivation). These values indicate that coin-
cidence losses are rare in the accuracy tests discussed above.

C. Digital coronavirus assay

Finally, in this section we consider real world application
of the proposed particle counting algorithm to experimental
nanoparticle images taken as part of a bio-assay for detection
of SARS-CoV-2 DNA biomarkers (see Section III-C). Specifi-
cally, presence of the target DNA markers induces nanoparticle
clustering as depicted in Figure 5(a) [61]. Given the short
incubation times used, nanoparticle aggregate sizes remained
below the optical diffraction limit, such that, like individual
nanoparticles, clusters appear as single bright spots in the
experimental images. Analyte presence can nevertheless be
detected through quantification of the apparent nanoparticle
concentration (or more strictly of the bright spots), N, ob-
served in the acquired dark field images. Acquired images
(2448 x 2048 pixels) were converted to gray-scale and initially
cropped by a factor of 0.7 along each dimension to reduce
illumination and imaging heterogenity across the field of view.
Images were then subsequently divided into non-overlapping
pixel sub-images, each of which were processed independently
using the proposed algorithm to estimate the corresponding
particle count. For the low (3.3 pM) and medium (6.6 pM)
nanoparticle concentration experiments, 50 x 50 sub-image
sizes were selected so as to ensure images containing Np,x = 5
or more particles were rare (see Figure 5(b) for examples
of typical sub-images). For the higher concentration sample
(13.2 pM) use of 50 x 50 images sizes resulted in larger



numbers of regions with high particle counts (as demonstrated
in Figure 5(b) and further illustrated in the Supplementary
Information), such that the sub-image size used was reduced to
35 x 35 pixels. The PSF width was estimated empirically from
measured images using Gaussian fitting on clearly identifiable
particle peaks and was found to be ~ 1.88 pixels.

Ideally, nanoparticles (or clusters) deposited onto a surface
would be distributed with uniform spatial probability across
the imaging field of view. Within any finite region of interest
(e.g. a sub-image) the discrete count of particles would hence
obey Poisson statistics (for which the variance and mean are
equal). Deviations from this ideal dispersion are however com-
monly induced by several physical processes, including sample
tilt, thermal gradients, image distortion, localised depletion of
free nanoparticles, coincidence loss, and surface heterogeneity
driving preferential binding. Such compounding factors can
necessitate the use of the generalized Poisson distribution
(GPD) [78] to describe count statistics, as defined by its
probability mass function

N(N + Ny)N—1
N!

where N > 0 is the rate parameter (analogous to that of
a Poisson process, albeit note that the mean of the GPD is
N/(1—1))), N is the count and 1 is the so-called dispersion
parameter. Over-dispersion, that is to say when ¢ > 0,
whereby the variance of particle count is greater than the mean,
can be attributed to, for example, image distortion or surface
heterogeneity, whereas under-dispersion (¢ < 0, variance <
mean) can be caused by coincidence loss suppressing high-
count events when particles strongly overlap in an image.
To test our algorithm in the context of a diagnostic assay
and determine spot density N, we perform a non-linear least
squares fit of the observed relative frequency of particle counts
across each experimental image set (Section III-C) using the
GPD (Eq. (14)) comparing nanoparticle-only (control) samples
against those with the target coronavirus biomarkers (E-DNA
and N-DNA). The fitting results are shown in Figure 5(c)-(e).
The error bands shown correspond to the observed standard
deviation in relative frequency across the set of obtained
images. Note that in the fitting, the N = 5 relative frequency
was excluded since at higher nanoparticle concentrations this
hypothesis is also likely selected when N > 5 particles are
present in any given sub-image, which would otherwise skew
the distribution. Excellent agreement between the observed
counts and GPD fits are evident in Figure 5 with the lowest
R? of 0.985 corresponding to the 13.2 pM total concentration
control data. A summary of the fitting parameters found and a
comparison to the conventional Poisson distribution fit is given
in the Supplementary Information.

While the GPD provides a complete description of the count
statistics, this level of full number resolution is often not
employed in conventional digital assays. Instead, readout in
such platforms is typically simplified to a binary “on/off”
signal to mitigate the impact of signal noise or instrument
limitations that make reliably distinguishing N = 1 from
N = 2 challenging. Although multi-threshold approaches
have been proposed [79], a single signal intensity threshold is

(14)

drawn to binarize all partitions into ‘negative’ (corresponding
to N = 0) and ‘positive’ (corresponding to N > 1) states.
Concentrations are then subsequently estimated using the
observed null count vy (0), as N = —logvy(0). This is
usually argued based on the underlying assumption of Poisson
statistics, but we here note that such null count estimators
are also robust to under and over-dispersion effects since
Eq. (14) reduces to py(0; N,%) = exp[—N] (in a similar
fashion to the conventional Poisson distribution), which is
independent of the dispersion parameter ). A comparison of
the extracted rate parameter with the null count method is also
given in the Supporting Material. Close agreement is observed
between the GPD and null count N estimates, confirming
the robustness of the null count method and the accuracy of
our counting algorithm. Conventional Poisson fitting, however,
whilst producing similar values of N, gave a statistically
poor fit to observed counts, as evidenced by the lower R?
values (see Supporting Information), thereby demonstrating
the distribution’s inability to adequately describe our data.

Figure 5(f) shows the variation of the extracted density
parameters N (from the GPD fitting) against the nominal
total nanoparticle concentration, exhibiting the expected linear
dependence. Note that the N found for the high concentration
case (with smaller image regions) was scaled by a factor of
(50/35)? to enable meaningful comparison. Importantly, N
represents the surface density of the deposited nanoparticles
(and/or clusters) in a 50 x 50 pixel region, which is distinct
from the bulk concentration in solution. A direct, quantitative
conversion between these two measures would in principle
require either a standard calibration curve or a mass transport
model. Absolute quantification of the nanoparticle reporter
is, however, not the objective for this diagnostic application.
The goal is instead to determine if the presence of the target
analyte induces a statistically robust change in the observ-
able particle deposition statistics. The statistical significance
of the difference between the control and positive samples
was therefore evaluated using the likelihood ratio (G-) test
and closely related Chi-squared (x?) test. Across all three
concentration regimes, the tests yielded p-values effectively
equal to zero, thereby providing strong support to reject the
null hypothesis that the observed distributions for the control
and positive samples are the same, i.e., the target coronavirus
DNA induces a statistically reliable change in the observed
spot count statistics.

Further insight can be gained from our data by inspection
of the fitted spot density N and dispersion parameter 1.
In particular we observe a number of trends. Firstly, we
note that the spot density for the control sample is lower
than that found for the positive case at lower nanoparticle
concentrations (3.3 pM and 6.6 pM), yet the converse holds at
high concentrations (13.2 pM). This result is counter-intuitive,
as the target DNA is expected to induce specific aggregation,
which would naively suggest a decrease in spot density relative
to the control for all cases. We attribute this trend to the
complex competition between specific (target-induced) and
non-specific aggregation pathways. In spite of efforts to reduce
non-specific particle binding (see Supplementary Information),
this phenomenon, driven by van der Waals forces and/or salt-
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Fig. 5. Nanoparticle imaging based SARS-CoV-2 assay. (a) Schematic of nanoparticle functionalisation (see Supplementary Information) and target induced
nanoparticle clustering. (b) Example dark-field images of deposited nanoparticles for different nanoparticle concentrations. For each concentration, images
shown correspond to a single 50 x 50 pixel sub-region input into the particle counting algorithm. High nanoparticle concentrations (13.2 pM), however can
frequently produce high numbers of particles (> nmax) in a given sub-image (orange dashed bounding box), such that smaller 35 x 35 pixel regions were used
(blue dashed bounding box). (c)-(e) Distribution of estimated particle counts across all sub-images, for both control (blue markers) and SARS-CoV-2 (‘covid’)
derived biomarkers positive (orange markers) samples, overlaid with GPD fits (solid curves). Error bands correspond to inter-image standard deviations. (f)
Fitted density parameters (per 50 X 50 pixel region) for different nanoparticle concentrations as found from GPD fitting (note, the 13.2 pM density was

rescaled) shown with corresponding linear fits (dashed curves).

induced surface charge screening, nevertheless occurs. When
the target (strongly negatively charged) DNA is present, whilst
inducing some particle clustering, it additionally coats the
surface of unlinked particles, hence adding significant charge
which acts as a stabilizing agent. This passivation layer pro-
tects the nanoparticles from non-specific binding, such that the
net clustering is reduced and N increases. At higher nanopar-
ticle concentrations, however, by virtue of greater particle
proximity, higher target-analyte binding affinities and potential
localized depletion of free nanoparticles, specific binding starts
to dominate over non-specific aggregation pathways, such that
N drops in the presence of the analyte. Resulting differences
in the average aggregate size, and corresponding differences
in mass transport may also contribute to the differing linear
gradients observed in Figure 5(f).

Secondly, for both the control and target-positive experi-
ments, we consistently observe ¢ > 0, indicating significant
over-dispersion, which moreover increases with nanoparticle
concentration. The behaviour of ) is also seen to switch at
higher concentrations (akin to V), with larger over-dispersion
found for the control case at lower concentrations. The ob-
served over-dispersion is posited to result from a number of
factors. A concentration independent contribution to 1 likely
originates from PSF elongation and vignetting observed in
the peripheries of our images. Although images were cropped
to mitigate this issue, some residual contribution to spatially
variant count statistics may remain. A concentration dependent

component to ¢ could additionally arise from nanoparticles
(and clusters), which have settled on the imaging substrate,
serving as seeds, i.e. preferential binding sites, for further
aggregation. The relative importance of this effect would be
dependent on the dominant aggregation pathway (specific vs.
non-specific) as discussed above. Differential rates of cluster
sedimentation onto the imaging plane may also be a contribut-
ing factor. Note that given the observed particle densities IV,
coincidence loss (which would reduce ) is expected to be
minimal.

V. CONCLUSION

In this work, we have developed a hypothesis-based particle
detection algorithm that provides accurate and interpretable
particle counts without reliance on training data or empirical
thresholds. By modeling pixel intensities as Poisson random
variables tied to a Gaussian point spread function, the frame-
work links inference directly to physical imaging parameters
and statistical decision theory. Although specific imaging
assumptions were made reflecting typical flourescence and
nanoparticle imaging modalities, it should be observed that
the approach is highly generalizable to account for engineered
PSFs, distinct imaging modalities or noise regimes.

Systematic performance simulations were presented, which
enabled us to benchmark and define the algorithm’s optimal
operating range. We demonstrated robust accuracy under weak
signals, elevated backgrounds, changes in magnification, and



moderate PSF mismatch. Two-particle resolution tests high-
lighted predictable error modes, with under-counting domi-
nating at very small separations and localized over-counting
near the resolvability threshold. These results establish clear
boundaries for resolvability and clarify the algorithm’s con-
servative failure modes.

Finally, application of the proposed algorithm to experi-
mental dark-field images served as a practical demonstration.
Particle counts were shown to follow expected statistical dis-
tributions and, critically, statistically significant count statistics
were observed for samples in which target coronavirus derived
DNA biomarkers was present. Count statistics obtained more-
over provided insight into competition between specific and
non-specific particle binding in our imaging assays, knowledge
of which can be leveraged for assay optimization.

Together, these numerical and experimental findings estab-
lish our method as a reliable tool for quantitative nanoparticle
imaging assays where statistical fidelity is essential. Future
work will extend the domain of application to color images,
such that spectral information can be leveraged for instance for
multiplexed diagnostics, and to include more advance imaging
modalities, such as interferometric scattering microscopy.
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