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Spectral degeneracies, including diabolic (DP) and exceptional (EP) points, exhibit unique sensi-
tivity to external perturbations, enabling powerful control and engineering of wave phenomena. We
present a residue-based perturbation theory that quantifies complex resonance splitting of DP and
EP type spectral degeneracies using generalized Wigner–Smith operators. We validate our theory
using both analytic Hamiltonian models and numerical electromagnetic simulations, demonstrating
excellent agreement across a range of cases. Our approach accurately predicts degenerate resonance
splitting using only scattering data, offering a powerful framework for precision tuning, inverse
design, and practical exploitation of non-Hermitian phenomena.

Introduction–The Wigner–Smith (WS) time delay op-
erator, initially introduced in quantum scattering theory
[1, 2], serves as a fundamental tool for characterizing the
temporal response of resonant systems. For a system de-
scribed by a scattering matrix S(ω), the eigenvalues of
the WS matrix Qω = −iS−1 ∂ωS quantify the group
delays of a set of incident wavepackets with modal struc-
tures given by the corresponding eigenvectors [3]. Qω

connects a system’s frequency-domain response to its en-
ergetic and temporal properties, allowing studies of, e.g.,
time-delay statistics in chaotic cavities [4], light storage
in random media [5], and density of states enhancement
in nuclear physics [6]. More recently, generalized WS
(GWS) operators of the form Qξ = −iS−1∂ξS, where ξ
denotes an arbitrary system parameter, have been pro-
posed, extending conventional WS operators into param-
eter space and connecting external scattering observables
to internal parametric sensitivities [7]. A key feature of
GWS operators is that their principal modes, defined in
analogy to the dispersion-free principal modes derived
from Qω [8], have been shown to exhibit insensitivity to
the variable conjugate to ξ [9]. This insight has lead to
a wealth of applications and recent advances in wave-
front shaping and control [10], including targeted focus-
ing in complex media [11], guided light delivery in de-
formed optical fibers [12], manipulation of optical forces
and trap stiffness in microparticle systems [13], tailored
energy redistribution in time-varying systems [14], and
the construction of optimal information states for scat-
tering measurements [15].

Recent studies have extended GWS operators to de-
scribe parametric spectral shifts in non-Hermitian sys-
tems [16, 17]. In particular, Byrnes and Foreman [16]
demonstrated that a complex analytic treatment of the
GWS operator yields compact perturbative formulae for
shifts in isolated resonances or anti-resonances associated
with the poles and zeros of S. Their treatment, however,
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was restricted to non-degenerate resonances and there-
fore fails at diabolic points (DPs), where multiple modes
share the same frequency [18], and exceptional points
(EPs), where degenerate modes also become linearly de-
pendent [19]. These degeneracies are not only mathemat-
ically rich, but also practically relevant. For example,
DPs underpin mode-splitting sensors [20], while EPs en-
able enhanced sensitivity, chiral mode control, and topo-
logical transport [21–23]. A GWS framework that rig-
orously handles such spectral singularities remains lack-
ing. In this work, we address this gap by developing a
residue-based formalism that extends earlier perturbative
formulae to arbitrary-order DP and EP type spectral de-
generacies and naturally reduces to earlier results in the
non-degenerate case. We validate our derived formula
using both analytic Hamiltonian models and electromag-
netic simulations, thereby demonstrating its applicability
to nanophotonic structures.
GWS perturbation theory at degenerate poles–We begin

by specifying the types of systems under study. Consider
a physical system with a non-Hermitian N × N Hamil-
tonian matrix H(α) ∈ CN×N depending on a complex
control parameter α. We assume that for a particular
parameter value α = α0, H(α0) has a repeated eigen-
value ωp with algebraic multiplicity AM = N . The na-
ture of the degeneracy and the behavior of the system in
response to perturbations is determined by the geomet-
ric multiplicity, GM, which equals the number of distinct
Jordan blocks associated with ωp. When AM = GM,
H(α0) is diagonalizable and the degeneracy corresponds
to a DP. When GM < AM, however, H(α0) is defective
and contains at least one Jordan block of size greater than
one. For our purposes, an EP will correspond to the case
GM = 1, meaning H(α0) contains a single Jordan block
of size N × N . Intermediate cases 1 < GM < N corre-
spond to hybrid DP-EP scenarios and shall be discussed
briefly below.
Suppose first that the system possesses an EP and is

perturbed so that α shifts from α0 to a nearby value. We
assume that this perturbation is generic, meaning the de-
generacy is lifted and ωp splits intoN distinct eigenvalues

ar
X

iv
:2

50
8.

05
03

9v
1 

 [
ph

ys
ic

s.
op

tic
s]

  7
 A

ug
 2

02
5

https://orcid.org/0009-0001-1171-3052
https://orcid.org/0000-0002-1554-3820
https://orcid.org/0000-0001-5864-9636
mailto:matthew.foreman@ntu.edu.sg
https://arxiv.org/abs/2508.05039v1


2

ωn (n = 1, . . . , N). At a point α in the neighborhood of
α0, the perturbed eigenfrequencies admit a Puiseux ex-
pansion [24]

ωn(α) = ωp + c e2πin/N∆α1/N +O
(
∆α2/N

)
, (1)

where ∆α = α − α0 and c ∈ C ̸= 0. We note imme-
diately that Eq. (1) implies that, to leading order, the
degenerate eigenvalue splits symmetrically and shifts in
proportion to ∆α1/N . Deviations from this scaling have
been reported for systems experiencing non-generic per-
turbations, such as those that preserve symmetry [25].
Such effects, however, are beyond the scope of this work.

In addition to ∆α, the shift sensitivity is also governed
by the coefficient c, which remains to be determined. It
has been shown elsewhere that this coefficient is related
to the orthogonality of the eigenvectors of H(α0) [26].
Here we show that it can also be related to the scattering
matrix S ∈ CM×M , defined by [27]

S(ω, α) = IM − iW†(ωIN −H(α)
)−1

W, (2)

where IM (IN ) is the M×M (N×N) identity matrix and
W ∈ CN×M couples the N internal modes of the system
to M external scattering channels. To achieve this, we
use the result [28]

cN = − ∂

∂α
det

[
ωIN −H(α)

]∣∣∣∣ω=ωp
α=α0

(3)

in conjunction with Sylvester’s identity [29], the latter of
which can be used to show that

det
[
ωIN −H(α)

]
= det

[
S−1(ω, α)

]
g(ω, α), (4)

where g(ω, α) = det
[
ωIN −H(α) − iWW†]. Differenti-

ating (4) with respect to α and applying Jacobi’s identity
to the derivative of det(S−1) yields

cN = lim
ω→ωp

(ω − ωp)
N

(
i tr

[
Qα(ω, α)

]
− 1

g

∂g

∂α

)∣∣∣∣
α=α0

,

(5)
where we have used det[ωIN −H(α0)] = (ω − ωp)

N . To
proceed, we assume that W is such that g is analytic and
non-zero at the EP, which implies the second term in (5)
vanishes. Though this condition is not always satisfied,
it is readily met when W is full rank. In practice, this
condition is desirable because it eliminates the presence
of dark modes. Standard limit laws allow us to write c =
Resω=ωp

{[i trQα(ω, α0)]
1/N}, which can be substituted

back into (1). Neglecting higher order terms then yields
the resonance shift formula

∆ωn = e2πin/N ∆α1/N Resω=ωp

{[
i trQα(ω, α0)

]1/N}
,

(6)
where ∆ωn = ωn − ωp. Notably, (6) exhibits the cor-
rect fractional power scaling and reduces to the non-
degenerate pole shift formula when N = 1 [16, 17]. It

should also be noted that it is easy to show, e.g. by con-
sidering S−1 instead of S, that the same analysis equally
applies to the splitting of degenerate scattering zeros,
such as those corresponding to coherent perfect absorp-
tion EPs [30].

We now turn our attention to DPs, where GM = N
and the Jordan normal form of H(α0) is diagonal with
repeated entry ωp. In contrast to EPs, where eigenvalue
shifts are strongly correlated, the linear independence of
modes at a DP allows the eigenvalues to shift indepen-
dently, each admitting their own Taylor expansion. Con-
sequently, (6) can not recover all frequency shifts and an
alternative approach is required. In principle, the N fre-
quency shifts could be determined by constructing GWS
operators from a suitable set of N scattering functions,
each isolating a single pole associated with one of the DP
modes. Application of the non-degenerate theory to each
of these operators would then yield the N desired fre-
quency shifts. The feasibility of this approach, however,
depends intricately on the form of W and H. The afore-
mentioned full rank condition for W, particularly when
M ≥ N (at least as many scattering channels as internal
modes), ensures that S possesses N non-zero eigenvalues.
These eigenvalues, which can easily be extracted from S,
are natural candidates for the desired set of scattering
functions. In general, however, a single eigenvalue of S
can depend on multiple eigenfrequencies of H and addi-
tional constraints are required to ensure that the poles
are cleanly separated.

One simple class of W matrices for which the eigen-
values of H do not mix among those of S can be found
by observing the algebraic structure of Eq. (2). Note
first that although W is not in general square, it possess
a right inverse WR = W†(WW†)−1. If WW† = γIN
for some constant γ, then it follows that W† = γWR

and Eq. (2) thus expresses pseudo-similarity between S
and H. Physically, this condition dictates that each in-
ternal mode couples to the exterior through orthogonal,
non-interfering channels with uniform coupling strength
γ. The eigenvalues of S will then be of the form
µn = 1 − iγ(ω − ωn)

−1 and analysis of the operators
Qα,n = −iµ−1

n ∂αµn yields the pole shifts. Though this
condition is sufficient to avoid mixing, it is not nec-
essary, and pole mixing can be avoided even in cases
where WW† is not diagonal. An exhaustive analysis
of such cases is beyond the scope of this paper, but
we note that if the form of W is known, one can al-
ways compute its inverse directly and obtain the resolvent

(ωIN −H)−1 = −iW†
R(S − IM )WR, whose eigenvalues

each are of the form (ω−ωn)
−1. This calculation reverts

the problematic mixing caused by W, yielding a set of
functions that can be used to find the pole shifts. As a fi-
nal remark, we note that the cases 1 < GM < N present
similar challenges associated with the structure of W.
In principle, however, the analysis can be restricted to
each Jordan block individually, allowing the techniques
described here to be applied separately to each one.

EP and DP in a two-level system–To verify our the-
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ory, we now apply it to the analysis of perturbations
to a canonical, non-Hermitian model widely used to de-
scribe coupled microring resonators and similar photonic
dimers [31]. This system is characterized by the 2 × 2
effective Hamiltonian

H(κ) =

(
ω1 − iγ1/2 κ

κ ω2 − iγ2/2

)
, (7)

where ω1 and ω2 are the resonant frequencies of the two
modes, γ1 and γ2 represent their loss rates, and κ is the
complex coupling amplitude. For convenience, the de-
tuning and loss contrast are defined as Ω ≡ ω1 − ω2 and
Γ ≡ γ1 − γ2 respectively. An EP arises when κ = κEP

is such that det[ωI − H(κEP)] = 0 has a repeated root
ω = ωEP, which occurs when κEP = ±i(Ω/2− iΓ/4) and
ωEP = (ω1 + ω2)/2− i(γ1 + γ2)/4. For a small deviation
κ = κEP + δκ with |δκ|≪|κEP|, direct diagonalization of
the resulting H yields the leading-order eigen-splitting

∆ω± ≃ ±
√
2κEP δκ. (8)

To compare (8) to (6) for the dimer system, we must first
define the form of the channel matrix W. For simplicity,
we choose W = diag

(√
γ1c,

√
γ2c

)
, which couples each

internal mode to an independent external channel with
rates γ1c and γ2c. The introduction of W requires us
to modify the effective Hamiltonian according to H →
H− iWW†/2, which, given the form of W, is equivalent
to redefining the loss rates in Eq. (7) according to γi →
γi + γic. With these redefinitions, the forms of κEP and
ωEP as given above remain invariant. Using Eq. (2), the
scattering matrix and corresponding GWS operator Qκ

can be computed. After some algebra, we find

Res
ω=ω0

[√
i trQκ(κEP)

]
=

√
2κEP, (9)

which, when substituted into (6) with N = 2, yields
∆ω± = ±

√
2κEP δκ, in exact agreement with (8).

By adjusting the parameters in Eq. (7), we can con-
struct a DP within the same mathematical framework.
This can be achieved by setting Ω = Γ = 0, which reduces
the effective Hamiltonain to H = (ω0 − iγ/2)I2 + κJ2,
where J2 is the 2×2 exchange matrix and ω0 = ω1(= ω2).
This case now trivially admits a DP at κDP = 0 with re-
peated eigenvalue ω0 − iγ/2. Altering κ by δκ shifts the
eigenvalues linearly by ∆ω± = ∓δκ. At the same time,
with W defined as before, but with γ1c = γ2c = γc and
γ → γ + γc, it is straightforward to show that the eigen-
values of S are given by µ± = 1−iγc(ω−ω0+iγ/2±κ)−1.
Note that this form of W satisfies the property WW† =
γI2 as discussed above and does not result in pole mix-
ing among µ±. The GWS operator Qκ,± = −iµ−1

± ∂κµ±
is then given by

Qκ,± =
±γc

(ω − ω0 + iγ/2± κ)(ω − ω0 + iγ/2± κ− iγc)
,

(10)
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FIG. 1: (a) Trajectories of poles in the polarizability of an ini-
tially spherical nanoparticle subjected to an axial elongation
(inset) along its first principal axis (a1 → a1 + ∆a) as com-
puted by root searching (RS, ◦ markers), our GWS residue
formula (× markers), and full FEM simulations (+ markers).
Colors indicate perturbation amplitude ∆a on a logarithmic
scale. (b) Magnitude of the relative difference in pole shifts
for both branches as obtained from the RS and GWS meth-
ods as a function of ∆a.

which, after partial fraction decomposition, can be shown
to have residue ±i at ω = ω0− iγ/2 when κ = 0. Eq. (6)
with N = 1 therefore predicts ∆ω± = ∓δκ as expected.
DP in polarizability tensor of ellipsoidal nanoparticles–

We now consider the case of a DP in a small, homoge-
neous, metallic ellipsoid. Our ellipsoid, embedded in a
background of unity permittivity, has semi-axes a1, a2, a3
(see inset of Figure 1) and complex permittivity ε(ω)
taken as that of gold assuming a Drude–Lorentz model
[32]. In a coordinate system aligned with the ellipsoid’s
principal axes, the 3× 3 polarizability tensor is diagonal
with entries [33]

Pi(ω) ∼
ε(ω)− 1

1 + Li[ε(ω)− 1]
, (11)

where Li are geometrical factors. In the case of a sphere
(a1 = a2 = a3), L1 = L2 = L3 = 1/3 and the principal
polarizabilities become degenerate, each exhibiting a pole
ωp at the Fröhlich resonance condition ε(ωp) = −2. The
sphere therefore constitutes a DP in the space of ellipsoid
shapes with the polarizability tensor playing the role of
the scattering matrix.
A small axial perturbation to the j’th semi-axis of the

sphere, aj → aj +∆aj , breaks the geometric symmetry,
partially lifting the degeneracy. The pole shifts in each
polarizibility component can be found by analyzing the
functions Q∆aj ,i = −iP−1

i ∂∆aj
Pi, from which we find

that the pole in Pi, ωp,i, shifts according to

∆ωp,i = ∆aj
6(1− 3δij)

5a
Res
ω=ωp

(
1

ε(ω) + 2

)
, (12)

where a is the sphere radius. Notably, Eq. (12) shows
that the pole associated with the elongated axis shifts in
the opposite direction to those of the other two axes, with
twice the magnitude. The polarizabilities of the remain-
ing axes stay degenerate, as their symmetry is preserved.
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FIG. 2: Splitting in the complex plane of (a) EP2, (b) EP3,
and (c) EP4 degenerate resonances supported in TO designed
plasmonic nanowire structures (insets) upon a perturbation,
∆ε, of the host permittivity. Complex frequency shifts were
calculated from direct solution of the TO dispersion rela-
tion (◦ markers) and our GWS residue formula (× markers).
Marker colour encodes ∆ε on a logarithmic scale. (d) Log–log
plot of the magnitude of the frequency shift |∆ω| versus ∆ε
for each EP. Gradients of 1/2, 1/3, and 1/4 for EP2, EP3

and EP4 respectively (black dashed fits) confirm the expected

∆ε1/N scaling.

To test the validity of Eq. (12), we compared it to the
results of two additional methods: root-tracking of the
inverse of the quasistatic polarizability, and numerical
tracking of the poles using finite-element (FEM) simu-
lations in COMSOL. In particular, we considered shifts
in a degenerate localized surface plasmon resonance at
ωp ≃ (3700− 400i)× 1012 rad/s in a sphere of radius 50
nm, stretched along one axis with ∆a ranging from 10−2

to 1 nm in 10 log-spaced intervals. Figure 1(a) com-
pares the computed complex frequency shifts. As can
be seen, all three methods show good quantitative agree-
ment across the range of perturbations considered. The
pole splitting is clearly visible, with the poles traversing
two oppositely directed branches. The upper-left branch
(Re(∆ω) < 0) corresponds to i = j (the pole in the polar-
izability of the perturbed axis) and features points spaced
twice as far apart as those on the doubly degenerate,
lower-right branch (Re(∆ω) > 0), which corresponds to
i ̸= j (poles in polarizabilities of the unperturbed axes).
Figure 1(b) shows the relative numerical differences be-
tween the GWS and numerical root based approaches,
confirming the agreement seen in (a). Errors for both
branches were found to grow approximately quadrati-
cally, indicating that the dominant source was the neglect
of higher-order terms in the perturbative expansion.

EPs in plasmonic nanowires–As a final test of our the-
ory, we investigate a class of plasmonic structures de-
signed using transformation optics (TO) to support EPs
of orders two, three, and four (denoted EP2, EP3, and
EP4 respectively) [34]. The corresponding compound
nanowire and dimer structures are depicted schemati-
cally in the insets of Figure 2(a)-(c). We introduce a
perturbation in the background dielectric permittivity,
ϵh → ϵh + ∆ϵ(r), and again track the resulting shifts
in the complex resonance frequencies. Resonance shifts
are computed first by directly solving the perturbed dis-
persion relation of the TO-based system [34] and sec-
ondly by applying (6) with the system’s transfer ma-
trix, whose poles also capture the EP, used in place of
S. Residue based predictions and numerically extracted
root trajectories are shown in Figure 2(a)–(c) for each
EP order. Good agreement between the GWS residue
formula (crosses) and the TO-based solutions (circles)
over six orders of magnitude variation in ∆ε (as depicted
by marker color) is evident. Each EP of order N also ex-
hibits a N fold symmetric splitting as predicted by (6).
Minor deviations arise at the largest perturbation am-
plitudes (∆ε ∼ 10−4), particularly for higher-order EPs,
which likely arise due to neglecting higher order terms in
the perturbative expansion as well as potentially inaccu-
racies from the TO based approach, given the nanowire
dimensions used. Plots of |∆ω| are also shown in Fig-
ure 2(d) confirming the theoretical ∆ε1/N scaling (note
that identical plots are found for each branch).

In conclusion, we have developed a perturbative frame-
work that extends prior GWS perturbation theory to
non-Hermitian systems exhibiting EPs and DPs. Our
approach shares the merits of its previous iterations, en-
abling the determination of internal resonant behavior
from external scattering measurements in a flexible and
straightforward way. Our theory was validated through
analytic Hamiltonian models and electromagnetic simu-
lations of assorted nanophotonic and TO engineered plas-
monic systems. Our results demonstrate the method’s
accuracy, generality, and computational practicality, of-
fering new perspectives and tools for resonance control,
precision sensing, and inverse design of complex non-
Hermitian environments.
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[13] U. G. Būtaitė, C. Sharp, M. Horodynski, G. M. Gibson,
M. J. Padgett, S. Rotter, and D. B. Phillips, Science
Advances 10, eadi7792 (2024).
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