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A B S T R A C T

We study the polarisation properties of random 𝑁 ×𝑁 scattering matrices distributed according to the circular
orthogonal ensemble. We interpret 2 × 2 sub-blocks of the scattering matrix as Jones matrices and study their
statistical properties. Using the polar decomposition, we derive probability density functions for retardance
and diattenuation from scattering matrices of arbitrary size and in the limit 𝑁 → ∞.
. Introduction

Polarised light is widely used in a variety of optical technolo-
ies, such as in characterising the optical properties of thin films [1],
easuring magnetic fields of astronomical objects [2], determining

he orientation of single molecules [3], readout of multiplexed op-
ical data storage [4] and discriminating healthy and precancerous
issue [5]. When fully polarised coherent light passes through a dis-
rdered medium or is reflected by a rough dielectric surface, scattering
eads to scrambling of the incident signal and the formation of a
omplex speckle pattern [6]. In addition to intensity, the state of
olarisation can also exhibit significant spatial variation throughout a
peckle pattern [7]. Furthermore, for any given measurement point, the
olarisation state of the scattered field can vary unpredictably between
ifferent realisations of the scattering medium, or over time in the case
f a dynamic medium. In principle, the exact morphology of a speckle
attern is a deterministic fingerprint of the microscopic configuration
f the scattering medium. In practice, however, speckle patterns are
ssentially random and statistical methods offer the most pragmatic
pproach to their study.

A plethora of tools exist to describe polarised light. For example,
tokes parameters constitute a set of four measurable quantities that
haracterise the polarisation state of light at a fixed point in space [8].
he statistical properties of these quantities are well known, particu-

arly in the case of underlying Gaussian fields [9–15], and have found
se in the analysis of surface roughness [16,17] and in remote sens-
ng [18]. The Mueller matrix, which describes the linear transformation
f the Stokes parameters upon interaction with a scattering medium,
as also been studied extensively and can reveal important structural
nformation about scattering media [19–21]. Among the numerous

∗ Corresponding author.
E-mail address: matthew.foreman@imperial.ac.uk (M.R. Foreman).

techniques used to analyse Mueller matrices, the polar decomposi-
tion is notably popular as it expresses a Mueller matrix as a series
of components that have intuitive optical interpretations, namely a
diattenuator, retarder and depolariser [22]. The statistical properties of
these components have found application in, for example, aiding early
cancer diagnostics [23–25].

More recently, polarisation-sensitive transmission and reflection
matrices for random media have been experimentally measured [26–
28]. These matrices describe the response of a medium to an arbitrary
incident wavefront, typically generated using a spatial light modu-
lator. Transmission and reflection matrices, which are blocks of the
scattering matrix, are amenable to theoretical study using random
matrix theory in which a scattering matrix is randomly sampled from
a matrix ensemble defined by symmetry constraints [29]. Random
matrix theory has revealed universal properties of scattering media,
such as the existence of open eigenchannels: incident wavefronts that
are highly transmitting, even in circumstances in which the ballistic
signal has fully decayed [30]. While the theory of random matrices is a
mature subject, particularly in its applications in mesoscopic quantum
physics [31], its application to the scattering of polarised light remains
relatively unexplored. In this work, we explore the polarisation prop-
erties of random scattering matrices using one of the earliest proposed
random matrix models: the circular ensembles. In particular, we look
to bridge the gap between random scattering matrices and the statistics
of more traditional polarimetric quantities, such as diattenuation and
retardance.

In Section 2 we briefly discuss the scattering matrix appropriate
for polarised light, its physical interpretation and mathematical con-
straints. We then introduce the circular orthogonal ensemble as a
statistical model for the scattering matrix and explore its predictions. In
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Fig. 1. A schematic diagram outlining the block structure of the scattering matrix. The
transmission and reflection matrices each consist of 𝑀2 sub-blocks of size 2 × 2. Each
sub-block can be interpreted as a Jones matrix, which describes the scattering between
a pair of plane wave components in the incident and scattered field.

Section 3 we examine the polar decomposition and derive probability
distributions for diattenuation and retardance. We conclude with a
summary of our findings in Section 4.

2. The scattering matrix

We begin with a brief overview of the scattering matrix. For a linear
system, the scattering matrix 𝐒 relates the field components of waves
hat impinge upon the system to those that are scattered away from the
ystem. Scattering matrices provide a useful description for a number of
ifferent types of systems, such as multi-mode fibres [32] and photonic
etworks [33]. For concreteness, we shall focus our attention on the
xample of plane wave scattering by a medium with slab geometry,
etails of which can be found in Ref. [34].

The incident and scattered fields in the regions either side of a
cattering slab can be expressed using the angular spectrum decomposi-
ion [8]. Suppose that these angular spectra can be well-approximated
y discrete spectra consisting of 𝑀 plane wave components. We shall
ake 𝑀 to be arbitrary, but one can imagine that complete information
f the fields is obtained in the limit 𝑀 → ∞. In the far-field of the scat-
ering medium, the field associated with each plane wave component
s transverse to the corresponding wavevector [35]. The polarisation
tate of each plane wave component can therefore be described using
pair of orthogonal field components, which together form a Jones

ector. The scattering matrix, which can be expressed as a 2 × 2 block
atrix of reflection and transmission matrices, describes the coupling

etween the full set of incident and outgoing plane wave components.
hen the polarisation state of each plane wave is accounted for, we can

hink of the transmission (reflection) matrix as consisting of many (𝑀2)
× 2 sub-blocks, each of which describes the transmission (reflection)

etween a pair of plane wave components in the incident and outgoing
ields. It is the structure of these 2 × 2 sub-blocks that encode the
olarimetric response of a scattering medium and, in light of the
receding comments, we may view these sub-blocks as Jones matrices.
s there are a total of 𝑀 plane wave components, the transmission
nd reflection matrices are of size 2𝑀 × 2𝑀 and, consequently, the
cattering matrix is of size 4𝑀 × 4𝑀 . An outline of the structure of the
cattering matrix is shown in Fig. 1. We use the notation 𝐭𝑖𝑗 and 𝐫𝑖𝑗 for
≤ 𝑖, 𝑗 ≤ 𝑀 to refer to the different sub-blocks within the transmission
nd reflection matrices 𝐭 and 𝐫. Within an arbitrary sub-block 𝐉, the
ubscripts 𝑠 and 𝑝 are used to denote two orthogonal basis polarisation
tates. On the far right of Fig. 1 we also demonstrate some examples of
airings of incident and scattered wavevectors.

In order to choose a suitable statistical model for the scattering
atrix, it is important to consider the mathematical constraints it

beys. Following Ref. [34], it is known that, when the scattering matrix
s appropriately normalised, conservation of energy is equivalent to

†
nitarity, i.e. 𝐒 𝐒 = 𝐈, where † denotes the conjugate transpose and d

2

is the identity matrix. In addition, if reciprocity (or time reversal
ymmetry) holds, then 𝐒 obeys

= 𝐊𝐒T𝐊−1, (1)

here 𝐊 = 𝐈2 ⊗ 𝜮 ⊗ 𝝈𝑧. Here, 𝐈2 is the 2 × 2 identity matrix; 𝜮 is
he 𝑀 × 𝑀 exchange matrix containing 1s on its anti-diagonal and
s elsewhere; 𝝈𝑧 = diag(1,−1) is a Pauli matrix and ⊗ denotes the
ronecker product. By the symmetry of 𝐊, the reciprocity (time reversal
ymmetry) constraint can be rewritten as 𝐒𝐊 = 𝐊𝐒T = (𝐒𝐊)T, from
hich it is evident that the matrix 𝐒𝐊, which is a signed permutation
f 𝐒, is symmetric. Since 𝐊 is unitary, it also follows that 𝐒𝐊 is uni-
ary. One can therefore generate a random scattering matrix satisfying
q. (1) by first generating a random unitary, symmetric matrix 𝐒′ and
hen computing 𝐒 = 𝐒′𝐊, which is equivalent to performing a signed
ermutation of the elements of 𝐒′.

One of the simplest random matrix ensembles for unitary, symmet-
ic matrices is the circular orthogonal ensemble (COE(𝑁), where 𝑁

denotes the size of the matrix). In the COE, 𝐒′ can be generated by
first randomly sampling a unitary matrix 𝐔 uniformly from the unitary
group and then computing 𝐒′ = 𝐔T𝐔. For more mathematical details,
we refer the interested reader to Ref. [36]. Intuitively, matrices gen-
erated from the COE describe isotropic scattering media, i.e. systems
that scatter equally into all outgoing modes. The COE may therefore
be an appropriate model for systems that are comparably transmissive
and reflective. In addition, the COE has also been used as a model for
the reflection matrix alone in the case of very thick media for which
transmission is negligible [37].

To study the polarisation properties of 𝐒, we shall consider the
oint statistics of 2 × 2 sub-blocks of 𝐒, which we view as Jones
atrices as per the previous discussion. Suppose that 𝐒 is an 𝑁 × 𝑁

matrix (𝑁 = 4𝑀) sampled as previously discussed and let 𝐉 be an
arbitrary 2 × 2 sub-block of 𝐒. Due to reciprocity, sub-blocks that lie
on the anti-diagonals of the reflection matrices satisfy 𝐉 = 𝝈𝑧𝐉T𝝈𝑧,
which is equivalent to the condition 𝐽12 = −𝐽21. These sub-blocks
correspond to back-scattering in the direction opposite to the incident
wavevector. Consequently, the statistics of these sub-blocks differ to
those of other Jones matrices located elsewhere within the scattering
matrix. Therefore, in order to conveniently account for both types of
sub-block, we introduce a parameter 𝛼, analogous to the more common
𝛽 symmetry parameter [29], which we set equal to 1 for back-scattering
Jones matrices and 2 for all other Jones matrices.

Moments of the elements of 𝐒 follow straightforwardly from mo-
ments of the elements of COE matrices, which are well-known. We have
⟨𝐽𝑖𝑗⟩ = 0 for 1 ≤ 𝑖, 𝑗,≤ 2, regardless of 𝛼, and

𝐽𝑖𝑗𝐽
∗
𝑘𝑙⟩ =

{

[𝛿𝑖𝑘𝛿𝑗𝑙(1 + 2𝛿𝑖𝑗 ) − 𝛿𝑖𝑙𝛿𝑗𝑘]∕(𝑁 + 1) if 𝛼 = 1,
𝛿𝑖𝑘𝛿𝑗𝑙∕(𝑁 + 1) if 𝛼 = 2,

(2)

here the averages are taken over COE(𝑁) [38]. The increased corre-
ation for diagonal elements in the 𝛼 = 1 case of Eq. (2) is understood
o be a manifestation of the coherent backscattering effect [29]. Every
ones matrix has a corresponding Mueller–Jones matrix and, by aver-
ging these Mueller–Jones matrices over different realisations of the
cattering matrix, one can obtain an ensemble average Mueller matrix
𝐌⟩ associated with each 2 × 2 sub-block of 𝐒 [39]. From Eq. (2) we
ee that for 𝛼 = 2, elements of 𝐉 are uncorrelated, meaning the average
ueller matrix associated with the ensemble of 𝐉 matrices is that of
pure depolariser, i.e. ⟨𝐌⟩ ∼ diag(1, 0, 0, 0). It is worth emphasising

ere that for a given scattering matrix and incident field, the scattered
ield is fully polarised. The average Stokes vector of the scattered field,
owever, is that of fully depolarised light, irrespective of the incident
ield. In fact, we found numerically that for any incident polarisation
tate, the polarisation states of the scattered field for different scattering
atrix realisations are distributed uniformly over the Poincaré sphere.

For 𝛼 = 1, we found instead that ⟨𝐌⟩ ∼ diag(1, 13 ,−
1
3 ,

1
3 ). In this case,

he average Mueller matrix is a partial depolariser, which reduces the
egree of polarisation of any fully polarised incident state to 1∕3. The
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retention of some degree of polarisation can be understood by noting
that the squared absolute values of the diagonal elements of 𝐉 are, on
verage, twice as large as those of the off-diagonal terms. Thus, there
s a slight preference for the scattered polarisation state to be parallel
o the incident polarisation state. Numerical tests showed that for any
ncident polarisation state, the distribution of the scattered polarisation
tates on the Poincaré sphere peaks at the incident polarisation state,
bout which it spreads symmetrically.

We finally note that regardless of the position of the Jones matrix
ithin the scattering matrix, no polarisation states, on average, scatter
ith any unique behaviour not exhibited by any other polarisation

tates. The COE is therefore unable to account for phenomena such
s the polarisation memory effect for circularly polarised light, where
ircularly polarised light tends to retain its degree of polarisation
ver greater distances than linearly polarised light, particularly in
nisotropic scattering environments [40].

. Diattenuation and retardance

While the COE shows no bias for any particular polarisation state,
e found that diattenuation and retardance associated with Jones
atrices within the scattering matrix follow non-trivial probability
istributions. The remainder of this report is devoted to their analysis.
iattenuation and retardance for an arbitrary Jones matrix can be
efined through the polar decomposition. Any Jones matrix 𝐉 may be
actorised as

= 𝐉R𝐉D, (3)

where 𝐉𝐷 =
√

𝐉†𝐉 is a positive semi-definite Hermitian (diattenuator)
atrix and 𝐉𝑅 = 𝐉𝐉−1𝐷 is a unitary (retarder) matrix [41]. We note that 𝐉

also admits a reverse polar decomposition 𝐉 = 𝐉′D𝐉R, where 𝐉′𝐷 =
√

𝐉𝐉†.
For our purposes, either choice of polar decomposition leads to the
same results and we shall hence proceed with that of Eq. (3). The
diattenuation 𝐷 and retardance 𝑅 of 𝐉 are defined by1

𝐷 =
|

|

|

𝑠21 − 𝑠22
|

|

|

𝑠21 + 𝑠22
, 𝑅 = min(|𝜃1 − 𝜃2|, 2𝜋 − |𝜃1 − 𝜃2|), (4)

where 𝑠1 and 𝑠2 are the eigenvalues of 𝐉𝐷 and exp(𝑖𝜃1) and exp(𝑖𝜃2) are
the eigenvalues of 𝐉𝑅. Note that 𝑠1 and 𝑠2 are also the singular values
of 𝐉. The eigenvector of 𝐉𝐷 with largest eigenvalue, when viewed as
a unit vector on the Poincaré sphere, is known as the diattenuation
vector [22]. Similarly, the eigenvector of 𝐉𝑅 corresponding to the
polarisation state that experiences the shortest optical path length is
known as the retardance vector. Generally speaking, diattenuation is
a measure of the extent to which the transmission (reflection) of light
by a system depends on the incident polarisation state. When 𝐷 = 0,
all incident polarisation states are transmitted (reflected) equally and
when 𝐷 = 1, 𝐉 is singular and there exists a polarisation state for
which the transmission (reflection) is zero. Similarly, retardance can be
thought of as a measure of the extent to which the optical path length
of a system depends on the incident polarisation state. We emphasise
here that since 𝐒 is assumed to be unitary, we are only concerned with
scattering-induced diattenuation and not dichroism due to polarisation-
dependent absorption. A low output intensity in one particular plane
wave component must be compensated by a larger output intensity in
another plane wave component so that energy is conserved overall.

We found that the statistical properties of diattenuation and re-
tardance are identical for sub-blocks within both 𝐒 and 𝐒′, i.e. they
are unaffected by the signed permutation matrix 𝐊. For simplicity,
we shall therefore henceforth take 𝐒 to be a symmetric, unitary ma-
trix sampled directly from the COE. The 𝛼 = 1 case corresponds to
sub-blocks lying on the diagonal of 𝐒, which are symmetric 2 × 2

1 Our expression for retardance is slightly non-standard, but ensures that
≤ 𝑅 ≤ 𝜋 for unordered 𝜃 and 𝜃 .
1 2

3

matrices. For on-diagonal Jones matrices of 𝐒, the joint probability
density function for the elements of 𝐉 was derived in Ref. [42]. For
off-diagonal Jones matrices, we found numerically that for large values
of 𝑁 , such matrices are statistically similar to arbitrary 2 × 2 sub-
locks of uniformly distributed unitary matrices (without a symmetry
onstraint). As shall be demonstrated, we found that this approximation
orks reasonably well even for values as small as 𝑁 = 12 (𝑀 = 3).
he 𝑁 ×𝑁 unitary group sampled with uniform probability density is
nown as the circular unitary ensemble (CUE(𝑁)), and the probability
ensity function for an arbitrary 2 × 2 sub-block of a matrix sampled
rom CUE(𝑁) has also been derived, such as in Ref. [43]. Combining
hese two results, the probability density function for 𝐉 is given by
approximately in the 𝛼 = 2 case)

(𝐉) ∝ [det(𝐈 − 𝐉†𝐉)]𝛼(𝑁−6+𝛼)∕2. (5)

e note that the density in Eq. (5) is independent of the choice of
olarisation basis, since it is invariant under the transformation 𝐉 →

𝐉𝐔−1 for all 2 × 2 unitary matrices 𝐔.
The polar decomposition is closely related to the singular value

ecomposition, in which 𝐉 is factorised as

=

{

𝐔𝜮𝐔T if 𝛼 = 1,
𝐕𝜮𝐖† if 𝛼 = 2,

(6)

here 𝐔, 𝐕 and 𝐖 are unitary matrices containing the singular vectors
f 𝐉 and 𝜮 = diag(𝑠1, 𝑠2) [44]. In the case 𝛼 = 1, we have used
special version of the singular value decomposition known as the

utonne–Takagi factorisation, which is possible due to the symmetry
f 𝐉. Straightforward algebra shows that the diattenuator and retarder
atrices of Eq. (3) are given by 𝐉𝐷 = 𝐔∗𝜮𝐔T, 𝐉𝑅 = 𝐔𝐔T for 𝛼 = 1

nd 𝐉𝐷 = 𝐖𝜮𝐖†, 𝐉𝑅 = 𝐕𝐖† for 𝛼 = 2. It can thus be seen that the
iattenuation and retardance vectors are closely related to the singular
ectors of 𝐉.

Let us now express the density for 𝐉 in Eq. (5) in terms of the
ariables used in Eq. (6). Doing so requires computing the Jacobian
or the change of variables. Letting 𝑑𝐉 denote the product of the
ifferentials of the elements of 𝐉, we find that

(𝐉)𝑑𝐉 ∝ 𝑠1𝑠2|𝑠
2
1 − 𝑠22|

𝛼[(1 − 𝑠21)(1 − 𝑠22)]
𝛼(𝑁−6+𝛼)∕2𝑑𝑠1𝑑𝑠2𝑑𝜇(𝐔,𝐕,𝐖), (7)

here 𝑑𝜇(𝐔,𝐕,𝐖) = 𝑑𝜇(𝐔) for 𝛼 = 1; 𝑑𝜇(𝐕)𝑑𝜇(𝐖) for 𝛼 = 2 and
𝜇 is the invariant (Haar) measure for the unitary group. In deriving
q. (7), we have made use of the fact that det(𝐈− 𝐉†𝐉) = det(𝐈−𝜮†𝜮) =
1−𝑠21)(1−𝑠22). Observing the right hand side of Eq. (7), we note that the
ingular values and singular vectors of 𝐉 are statistically independent,
nd the joint probability density function for 𝑠1 and 𝑠2 is proportional to
he function multiplying the differentials. In addition, we see that the
atrices 𝐔, 𝐕 and 𝐖 are all uniformly distributed unitary matrices,

rrespective of 𝑁 . It follows that the diattenuation and retardance
ectors are uniformly distributed on the surface of the Poincaré sphere,
eaning there are no preferentially transmitted (reflected) polarisation

tates across the entire ensemble of scattering matrices.
We now derive probability density functions for 𝑅 and 𝐷. For 𝛼 = 1,

e see that 𝐉𝑅 = 𝐔𝐔T is distributed according to COE(2). For 𝛼 = 2
n the other hand, 𝐉𝑅 = 𝐕𝐖† is the product of two uniformly dis-
ributed unitary matrices and is thus distributed according to CUE(2).
otably, the statistics of the retarder matrix has no dependence on

in either case. The joint density for the eigenvalues of 𝐉𝑅 is given
y [45]

(𝜃1, 𝜃2) ∝ |𝑒𝑖𝜃1 − 𝑒𝑖𝜃2 |𝛼 . (8)

he probability density function for the retardance can therefore be
omputed by the integral

(𝑅) ∝ ∫

2𝜋

0 ∫

2𝜋

0
|𝑒𝑖𝜃1 − 𝑒𝑖𝜃2 |𝛼𝛿[𝑅 − min(|𝜃1 − 𝜃2|, 2𝜋 − |𝜃1 − 𝜃2|)]𝑑𝜃1𝑑𝜃2,

(9)



N. Byrnes and M.R. Foreman Optics Communications 503 (2022) 127462

t
s
n
f
m

b
h

s
c
r
1
a

i
w

Fig. 2. Histograms of retardance for on-diagonal sub-blocks (𝛼 = 1) and off-diagonal
sub-blocks (𝛼 = 2). Data points were calculated from 106 realisations of COE matrices.
Analytic curves are given by Eq. (10).

where 𝛿 is the Dirac delta function. From Eq. (9), we can make the
change of variables 𝑥 = 𝜃2 − 𝜃1, 𝑦 = 𝜃2 + 𝜃1 and evaluate the integral
piecewise, yielding

𝑝(𝑅) =

{

1
2 sin

(𝑅
2

)

if 𝛼 = 1,
2
𝜋 sin2

(𝑅
2

)

if 𝛼 = 2,
(10)

which we have plotted as solid lines in Fig. 2. The data points (circles
in Fig. 2) were calculated by randomly generating 106 COE matrices
and calculating 𝑅 according to Eq. (4) from two different sub-blocks of
𝐒: one on-diagonal and one off-diagonal. As can be seen, the theoretical
curves fit the data points excellently. In both cases we see that the
density is monotonically increasing and peaks at 𝑅 = 𝜋. Therefore, in
erms of relative phase changes experienced by the incident field, the
cattering medium is most likely to behave as a half-wave plate. We
ote that our result here for 𝛼 = 2 is similar to that derived elsewhere
or the retardation angle in optical fibres using a random Jones matrix
odel, albeit using a slightly different definition for retardance [46].

The probability density function for the diattenuation can be found
y integrating the joint density for 𝑠1 and 𝑠2 in Eq. (7). Explicitly, we
ave

𝑝(𝐷) ∝ ∫

1

0 ∫

1

0
𝑠1𝑠2|𝑠

2
1 − 𝑠22|

𝛼[(1 − 𝑠21)(1 − 𝑠22)]
𝛼(𝑁−6+𝛼)∕2

× 𝛿

(

𝐷 −
|

|

|

𝑠21 − 𝑠22
|

|

|

𝑠21 + 𝑠22

)

𝑑𝑠1𝑑𝑠2,

(11)

which, after some manipulation, can be reduced to

𝑝(𝐷) ∝ 𝐷𝛼

(1 +𝐷)𝛼+2 ∫

1

0
𝑥𝛼+1

[

(1 − 𝑥)
(

1 − 1 −𝐷
1 +𝐷

𝑥
)]𝛼(𝑁−6+𝛼)∕2

𝑑𝑥. (12)

The resulting integral in Eq. (12) can be expressed in terms of the hy-
pergeometric function 2𝐹1 (see 3.197, 3. of Ref. [47]). After normalising
the resulting densities, we find that

𝑝(𝐷) =

⎧

⎪

⎨

⎪

⎩

16𝑁−2
𝑁+1

𝐷
(1+𝐷)3 2𝐹1

(

5−𝑁
2 , 3; 𝑁+3

2 ; 1−𝐷
1+𝐷

)

if 𝛼 = 1,

48𝑁−2
𝑁

𝐷2

(1+𝐷)4 2𝐹1

(

4 −𝑁, 4;𝑁 + 1; 1−𝐷
1+𝐷

)

if 𝛼 = 2.
(13)

Some example plots of these densities for different values of 𝑁 are
hown in Fig. 3 for both 𝛼 = 1 and 𝛼 = 2. As with our retardance
alculations, the data points were computed with Eq. (4) using 106
ealisations of COE matrices for each matrix size. Our result for 𝛼 =

is exact and fits very well for all matrix sizes. For 𝛼 = 2, our
pproximate result fits the data reasonably well for 𝑁 ≥ 12. While not

shown here, for 𝑁 < 12 we observed deviations from the simulated
data, particularly in the minimal case 𝑁 = 4, which corresponds to
single-mode scattering. As 𝑁 increases however, the approximation
mproves.
 r

4

Fig. 3. Histograms of diattenuation for sub-blocks of scattering matrices of different
sizes. Data points were calculated from 106 realisations of COE matrices. Analytic curves
are given by Eq. (13).

As can be seen, with the exception of 𝑁 = 4 for 𝛼 = 1, the densities
are strictly increasing and peak at 𝐷 = 1 for all values of 𝑁 . We
therefore find that, when viewing the outgoing field in a single mode,
it is most probable that the scattering medium behaves like a polarising
filter that totally rejects one polarisation state. Since the diattenuation
vector is uniformly distributed on the Poincaré sphere, the polarisation
state that is rejected is completely random. Furthermore, since different
sub-blocks of 𝐒 are uncorrelated, the rejected polarisation states in
different outgoing modes are also uncorrelated. Since the diattenuation
and retardance statistics are independent, we conclude that the most
probable behaviour of a Jones matrix within the scattering matrix is
that of a polarising filter followed by a half-wave plate, both with ran-
domly oriented and independent eigenvectors. We note that the mean
diattenuation is lower for the 𝛼 = 1 case. When diattenuation is large,
the scattered polarisation state tends to be close to the diattenuation
vector, regardless of the incident polarisation state. This would result
in a loss of correlation between the incident and scattered polarisation
states. As discussed in the previous section, we found that the incident
and scattered polarisation states were partially correlated in the back-
scattering direction, which is therefore consistent with a lower average
diattenuation.

In optical scattering experiments, the number of modes admitted by
a system tends to be very large, typically on the order of tens of millions
per millimetre of illuminated surface area for visible light [48]. It is
therefore useful to consider the large 𝑁 limit of Eq. (13). This limit
may be taken directly using the asymptotic relation

2𝐹1(𝑎 −𝑁, 𝑏; 𝑐 +𝑁 ; 𝑧) ∼ 1
(1 + 𝑧)𝑏

, (14)

hich holds for large 𝑁 and arbitrary 𝑎, 𝑏 and 𝑐 [49]. Applying this
esult to Eq. (13) and renormalising the resulting densities, we find the
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Table 1
Statistics of diattenuation and retardance distributions. Retardance statistics were calculated using Eq. (10) and diattenuation
statistics using Eq. (15).

Variable 𝛼 Mean Variance Skewness Kurtosis

𝐷
1 2

3
1
18

− 2
5

√

2 12
5

2 3
4

3
80 − 2

3

√

5
3

65
21

𝑅

1 2 4(𝜋 − 3) 3𝜋2 − 12𝜋 + 8

4(𝜋 − 3)
3
2

𝜋3 − 6𝜋2 − 12𝜋 + 66
2(𝜋 − 3)2

2 𝜋2 + 4
2𝜋

𝜋4 − 48
12𝜋2

24
√

3(𝜋4 − 12𝜋2 + 16)

(𝜋4 − 48)
3
2

9(𝜋8 − 800𝜋4 + 7680𝜋2 − 3840)
5(𝜋4 − 48)2
L
s
𝐓

𝑝

T
c

simple results

𝑝(𝐷)𝑁→∞ =

{

2𝐷 if 𝛼 = 1,
3𝐷2 if 𝛼 = 2.

(15)

Observing again Fig. 3, these asymptotic densities closely match the
densities for 𝑁 = 100, which is well below the number of modes
expected in a typical scattering experiment. Interestingly, Eq. (15) can
also be derived using a Gaussian approximation for the elements of the
Jones matrix. Details of this calculation can be found in the Appendix. A
summary of the mean, variance, skewness and kurtosis of the densities
given in Eq. (10) and (15) is given in Table 1.

4. Conclusion

To summarise, we have explored the consequences of applying the
COE to random vector scattering matrices that incorporate the polari-
sation properties of light. When viewing the outgoing field in a single
mode away from the backscattering direction, the polarisation state of
the scattered field is uniformly distributed over the Poincaré sphere
for different realisations of the scattering matrix. The average Mueller
matrix is thus a pure depolariser. In the backscattering direction, the
average Mueller matrix is only partially depolarising and the scattered
fields are distributed non-uniformly on the Poincaré sphere, tending
to focus around the incident polarisation state. The distributions for
retardance and diattenuation associated with Jones matrices within 𝐒
are non-trivial. For a given instance of a scattering matrix, it is most
probable that a random scattering medium acts as a serial combination
of a polarising filter followed by a half-wave plate with diattenuation
and retardance vectors uniformly distributed on the Poincaré sphere.

As a model for random scattering matrices, the COE is clearly
limited and is unable to describe anisotropic scattering. Nevertheless,
compared to more sophisticated random matrix models, the COE is
mathematically simple and may serve as a reference model for fully
depolarising media. The task of exploring more general random matrix
ensembles is left for future studies.
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Appendix. Alternate asymptotic derivation

In this section we outline an alternative derivation of Eq. (15). For
large 𝑁 , the elements of a matrix drawn from the COE can be treated
as uncorrelated, zero-mean complex Gaussian random variables with
variances given by [50]

⟨|𝑆𝑖𝑗 |
2
⟩ ∼

1 + 𝛿𝑖𝑗
𝑁

. (A.1)

et 𝐉 be a 2 × 2 sub-block of 𝐒, and let 𝐓 =
√

𝑁𝐉. Notably, 𝐓 has the
ame diattenuation as 𝐉. By considering Eq. (A.1), it can be shown that

has joint density given by

(𝐓) ∝ exp
(

− 1
3 − 𝛼

tr(𝐓†𝐓)
)

. (A.2)

Taking a singular value decomposition of 𝐓 as in the main text and
changing variables yields the density for the singular values of 𝐓, 𝑠1
and 𝑠2, which is given by

𝑝(𝑠1, 𝑠2) ∝ 𝑠1𝑠2|𝑠
2
1 − 𝑠22|

𝛼 exp
(

− 1
3 − 𝛼

(𝑠21 + 𝑠22)
)

. (A.3)

he probability density function for the diattenuation can therefore be
alculated from the integral

𝑝(𝐷) ∝ ∫

∞

0 ∫

∞

0
𝑠1𝑠2|𝑠

2
1 − 𝑠22|

𝛼 exp
(

− 1
3 − 𝛼

(𝑠21 + 𝑠22)
)

× 𝛿

(

𝐷 −
|

|

|

𝑠21 − 𝑠22
|

|

|

𝑠21 + 𝑠22

)

𝑑𝑠1𝑑𝑠2,
(A.4)

which can be evaluated to yield the density given in Eq. (15).
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