
Polarisation statistics of vector scattering matrices from the circular

orthogonal ensemble

Niall Byrnes, Matthew R. Foreman1

Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, London SW7
2AZ, United Kingdom

Abstract

We study the polarisation properties of random N × N scattering matrices distributed ac-
cording to the circular orthogonal ensemble. We interpret 2× 2 sub-blocks of the scattering
matrix as Jones matrices and study their statistical properties. Using the polar decomposi-
tion, we derive probability density functions for retardance and diattenuation from scattering
matrices of arbitrary size and in the limit N →∞.
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1. Introduction

Polarised light is widely used in a variety of optical technologies, such as in characterising
the optical properties of thin films [1], measuring magnetic fields of astronomical objects
[2], determining the orientation of single molecules [3], readout of multiplexed optical data
storage [4] and discriminating healthy and precancerous tissue [5]. When fully polarised5

coherent light passes through a disordered medium or is reflected by a rough dielectric surface,
scattering leads to scrambling of the incident signal and the formation of a complex speckle
pattern [6]. In addition to intensity, the state of polarisation can also exhibit significant
spatial variation throughout a speckle pattern [7]. Furthermore, for any given measurement
point, the polarisation state of the scattered field can vary unpredictably between different10

realisations of the scattering medium, or over time in the case of a dynamic medium. In
principle, the exact morphology of a speckle pattern is a deterministic fingerprint of the
microscopic configuration of the scattering medium. In practice, however, speckle patterns
are essentially random and statistical methods offer the most pragmatic approach to their
study.15

A plethora of tools exist to describe polarised light. For example, Stokes parameters
constitute a set of four measurable quantities that characterise the polarisation state of
light at a fixed point in space [8]. The statistical properties of these quantities are well
known, particularly in the case of underlying Gaussian fields [9–15], and have found use in
the analysis of surface roughness [16, 17] and in remote sensing [18]. The Mueller matrix,20

which describes the linear transformation of the Stokes parameters upon interaction with
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a scattering medium, has also been studied extensively and can reveal important structural
information about scattering media [19–21]. Among the numerous techniques used to analyse
Mueller matrices, the polar decomposition is notably popular as it expresses a Mueller matrix
as a series of components that have intuitive optical interpretations, namely a diattenuator,25

retarder and depolariser [22]. The statistical properties of these components have found
application in, for example, aiding early cancer diagnostics [23–25].

More recently, polarisation-sensitive transmission and reflection matrices for random me-
dia have been experimentally measured [26–28]. These matrices describe the response of a
medium to an arbitrary incident wavefront, typically generated using a spatial light modula-30

tor. Transmission and reflection matrices, which are sub-blocks of the scattering matrix, are
amenable to theoretical study using random matrix theory in which a scattering matrix is
randomly sampled from a matrix ensemble defined by symmetry constraints [29]. Random
matrix theory has revealed universal properties of scattering media, such as the existence of
open eigenchannels: incident wavefronts that are highly transmitting, even in circumstances35

in which the ballistic signal has fully decayed [30]. While the theory of random matrices
is a mature subject, particularly in its applications in mesoscopic quantum physics [31], its
application to the scattering of polarised light remains relatively unexplored. In this work,
we explore the polarisation properties of random scattering matrices using one of the earliest
proposed random matrix models: the circular ensembles. In particular, we look to bridge the40

gap between random scattering matrices and the statistics of more traditional polarimetric
quantities, such as diattenuation and retardance.

In Section 2 we briefly discuss the scattering matrix appropriate for polarised light, its
physical interpretation and mathematical constraints. We then introduce the circular orthog-
onal ensemble as a statistical model for the scattering matrix and explore its predictions. In45

Section 3 we examine the polar decomposition and derive probability distributions for diat-
tenuation and retardance. We conclude with a summary of our findings in Section 4.

2. The Scattering Matrix

We begin with a brief overview of the scattering matrix. For a linear system, the scattering
matrix S relates the field components of waves that impinge upon the system to those that50

are scattered away from the system. Scattering matrices provide a useful description for a
number of different types of systems, such as multi-mode fibers [32] and photonic networks
[33]. For concreteness, we shall focus our attention on the example of plane wave scattering
by a medium with slab geometry, details of which can be found in Ref. [34].

The incident and scattered fields in the regions either side of a scattering slab can be55

expressed using the angular spectrum decomposition [8]. Suppose that these angular spectra
can be well-approximated by discrete spectra consisting of M plane wave components. We
shall take M to be arbitrary, but one can imagine that complete information of the fields is
obtained in the limit M →∞. In the far-field of the scattering medium, the field associated
with each plane wave component is transverse to the corresponding wavevector [35]. The60

polarisation state of each plane wave component can therefore be described using a pair of
orthogonal field components, which together form a Jones vector. The scattering matrix,
which can be expressed as a 2 × 2 block matrix of reflection and transmission matrices, de-
scribes the coupling between the full set of incident and outgoing plane wave components.
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Figure 1: A schematic diagram outlining the block structure of the scattering matrix. The transmission and
reflection matrix each consist of M2 sub-blocks of size 2 × 2. Each sub-block can be interpreted as a Jones
matrix, which describes the scattering between a pair of plane wave components in the incident and scattered
field.

When the polarisation state of each plane wave is accounted for, we can think of the transmis-65

sion (reflection) matrix as consisting of many (M2) 2× 2 sub-blocks, each of which describes
the transmission (reflection) between a pair of plane wave components in the incident and
outgoing fields. It is the structure of these 2 × 2 sub-blocks that encode the polarimetric
response of a scattering medium and, in light of the preceding comments, we may view these
sub-blocks as Jones matrices. As there are a total of M plane wave components, the trans-70

mission and reflection matrices are of size 2M ×2M and, consequently, the scattering matrix
is of size 4M × 4M . An outline of the structure of the scattering matrix is shown in Figure
1. We use the notation tij and rij for 1 ≤ i, j ≤ M to refer to the different sub-blocks
within the transmission and reflection matrices t and r. Within an arbitrary sub-block J,
the subscripts s and p are used to denote two orthogonal basis polarization states. On the75

far right of Figure 1 we also demonstrate some examples of pairings of incident and scattered
wavevectors.

In order to choose a suitable statistical model for the scattering matrix, it is important
to consider the mathematical constraints it obeys. Following Ref. [34], it is known that,
when the scattering matrix is appropriately normalised, conservation of energy is equivalent
to unitarity, i.e. S†S = I, where † denotes the conjugate transpose and I is the identity
matrix. In addition, if reciprocity (or time reversal symmetry) holds, then S obeys

S = KSTK−1, (1)

where K = I2 ⊗ Σ ⊗ σz. Here, I2 is the 2 × 2 identity matrix; Σ is the M ×M exchange
matrix containing 1s on its anti-diagonal and 0s elsewhere; σz = diag(1,−1) is a Pauli matrix
and ⊗ denotes the Kronecker product. By the symmetry of K, the reciprocity (time reversal80

symmetry) constraint can be rewritten as SK = KST = (SK)T, from which it is evident that
the matrix SK, which is a signed permutation of S, is symmetric. Since K is unitary, it also
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follows that SK is unitary. One can therefore generate a random scattering matrix satisfying
Eq. (1) by first generating a random unitary, symmetric matrix S′ and then computing
S = S′K, which is equivalent to performing a signed permutation of the elements of S′.85

One of the simplest random matrix ensembles for unitary, symmetric matrices is the
circular orthogonal ensemble (COE(N), where N denotes the size of the matrix). In the
COE, S′ can be generated by first randomly sampling a unitary matrix U uniformly from
the unitary group and then computing S′ = UTU. For more mathematical details, we refer
the interested reader to Ref. [36]. Intuitively, matrices generated from the COE describe90

isotropic scattering media, i.e. systems that scatter equally into all outgoing modes. The
COE may therefore be an appropriate model for systems that are comparably transmissive
and reflective. In addition, the COE has also been used as a model for the reflection matrix
alone in the case of very thick media for which transmission is negligible [37].

To study the polarisation properties of S, we shall consider the joint statistics of 2×2 sub-95

blocks of S, which we view as Jones matrices as per the previous discussion. Suppose that S
is an N×N matrix (N = 4M) sampled as previously discussed and let J be an arbitrary 2×2
sub-block of S. Due to reciprocity, sub-blocks that lie on the anti-diagonals of the reflection
matrices satisfy J = σzJ

Tσz, which is equivalent to the condition J12 = −J21. These sub-
blocks correspond to back-scattering in the direction opposite to the incident wavevector.100

Consequently, the statistics of these sub-blocks differ to those of other Jones matrices located
elsewhere within the scattering matrix. Therefore, in order to conveniently account for both
types of sub-block, we introduce a parameter α, analogous to the more common β symmetry
parameter [29], which we set equal to 1 for back-scattering Jones matrices and 2 for all other
Jones matrices.105

Moments of the elements of S follow straightforwardly from moments of the elements of
COE matrices, which are well-known. We have 〈Jij〉 = 0 for 1 ≤ i, j,≤ 2, regardless of α,
and

〈JijJ∗kl〉α=1 =
δikδjl(1 + 2δij)− δilδjk

N + 1
, 〈JijJ∗kl〉α=2 =

δikδjl
N + 1

, (2)

where the averages are taken over COE(N) [38]. The increased correlation for diagonal
elements in the α = 1 case of Eq. (2) is understood to be a manifestation of the coherent
backscattering effect [29]. Every Jones matrix has a corresponding Mueller-Jones matrix
and, by averaging these Mueller-Jones matrices over different realisations of the scattering
matrix, one can obtain an ensemble average Mueller matrix 〈M〉 associated with each 2× 2110

sub-block of S [39]. From Eq. (2) we see that for α = 2, elements of J are uncorrelated,
meaning the average Mueller matrix associated with the ensemble of J matrices is that of
a pure depolariser, i.e. 〈M〉 ∼ diag(1, 0, 0, 0). It is worth emphasising here that for a
given scattering matrix and incident field, the scattered field is fully polarised. The average
Stokes vector of the scattered field, however, is that of fully depolarised light, irrespective115

of the incident field. In fact, we found numerically that for any incident polarisation state,
the polarisation states of the scattered field for different scattering matrix realisations are
distributed uniformly over the Poincaré sphere.

For α = 1, we found instead that 〈M〉 ∼ diag(1, 1
3
,−1

3
, 1
3
). In this case, the average

Mueller matrix is a partial depolariser, which reduces the degree of polarisation of any fully120

polarised incident state to 1/3. The retention of some degree of polarisation can be under-
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stood by noting that the squared absolute values of the diagonal elements of J are, on average,
twice as large as those of the off-diagonal terms. Thus, there is a slight preference for the
scattered polarisation state to be parallel to the incident polarisation state. Numerical tests
showed that for any incident polarisation state, the distribution of the scattered polarisation125

states on the Poincaré sphere peaks at the incident polarisation state, about which it spreads
symmetrically.

We finally note that regardless of the position of the Jones matrix within the scattering
matrix, no polarisation states, on average, scatter with any unique behaviour not exhibited
by any other polarisation states. The COE is therefore unable to account for phenomena130

such as the polarisation memory effect for circularly polarised light, where circularly polarised
light tends to retain its degree of polarisation over greater distances than linearly polarised
light, particularly in anisotropic scattering environments [40].

3. Diattenuation and Retardance

While the COE shows no bias for any particular polarisation state, we found that diat-
tenuation and retardance associated with Jones matrices within the scattering matrix follow
non-trivial probability distributions. The remainder of this report is devoted to their analy-
sis. Diattenuation and retardance for an arbitrary Jones matrix can be defined through the
polar decomposition. Any Jones matrix J may be factorised as

J = JRJD, (3)

where JD =
√

J†J is a positive semi-definite Hermitian (diattenuator) matrix and JR = JJ−1D
is a unitary (retarder) matrix [41]. We note that J also admits a reverse polar decomposition

J = J′DJR, where J′D =
√

JJ†. For our purposes, either choice of polar decomposition leads
to the same results and we shall hence proceed with that of Eq. (3). The diattenuation D
and retardance R of J are defined by2

D =

∣∣s21 − s22∣∣
s21 + s22

, R = min(|θ1 − θ2|, 2π − |θ1 − θ2|), (4)

where s1 and s2 are the eigenvalues of JD and exp(iθ1) and exp(iθ2) are the eigenvalues of135

JR. Note that s1 and s2 are also the singular values of J. The eigenvector of JD with largest
eigenvalue, when viewed as a unit vector on the Poincaré sphere, is known as the diattenuation
vector [22]. Similarly, the eigenvector of JR corresponding to the polarisation state that
experiences the shortest optical path length is known as the retardance vector. Generally
speaking, diattenuation is a measure of the extent to which the transmission (reflection) of140

light by a system depends on the incident polarisation state. When D = 0, all incident
polarisation states are transmitted (reflected) equally and when D = 1, J is singular and
there exists a polarisation state for which the transmission (reflection) is zero. Similarly,
retardance can be thought of as a measure of the extent to which the optical path length
of a system depends on the incident polarisation state. We emphasise here that since S is145

2Our expression for retardance is slightly non-standard, but ensures that 0 ≤ R ≤ π for unordered θ1 and
θ2.
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assumed to be unitary, we are only concerned with scattering-induced diattenuation and not
dichroism due to polarisation-dependent absorption. A low output intensity in one particular
plane wave component must be compensated by a larger output intensity in another plane
wave component so that energy is conserved overall.

We found that the statistical properties of diattenuation and retardance are identical for
sub-blocks within both S and S′, i.e. they are unaffected by the signed permutation matrix
K. For simplicity, we shall therefore henceforth take S to be a symmetric, unitary matrix
sampled directly from the COE. The α = 1 case corresponds to sub-blocks lying on the
diagonal of S, which are symmetric 2 × 2 matrices. For on-diagonal Jones matrices of S,
the joint probability density function for the elements of J was derived in Ref. [42]. For
off-diagonal Jones matrices, we found numerically that for large values of N , such matrices
are statistically similar to arbitrary 2×2 sub-blocks of uniformly distributed unitary matrices
(without a symmetry constraint). As shall be demonstrated, we found that this approxima-
tion works reasonably well even for values as small as N = 12 (M = 3). The N ×N unitary
group sampled with uniform probability density is known as the circular unitary ensemble
(CUE(N)), and the probability density function for an arbitrary 2× 2 sub-block of a matrix
sampled from CUE(N) has also been derived, such as in Ref. [43]. Combining these two
results, the probability density function for J is given by (approximately in the α = 2 case)

p(J) ∝ [det(I− J†J])]α(N−6+α)/2. (5)

We note that the density in Eq. (5) is independent of the choice of polarisation basis, since150

it is invariant under the transformation J→ UJU−1 for all 2× 2 unitary matrices U.
The polar decomposition is closely related to the singular value decomposition, in which

J is factorised as

J =

{
UΣUT if α = 1,

VΣW† if α = 2,
(6)

where U, V and W are unitary matrices containing the singular vectors of J and Σ =
diag(s1, s2) [44]. In the case α = 1, we have used a special version of the singular value
decomposition known as the Autonne-Takagi factorisation, which is possible due to the sym-
metry of J. Straightforward algebra shows that the diattenuator and retarder matrices of155

Eq. (3) are given by JD = U∗ΣUT, JR = UUT for α = 1 and JD = WΣW†, JR = VW† for
α = 2. It can thus be seen that the diattenuation and retardance vectors are closely related
to the singular vectors of J.

Let us now express the density for J in Eq. (5) in terms of the variables used in Eq. (6).
Doing so requires computing the Jacobian for the change of variables. Letting dJ denote the
product of the differentials of the elements of J, we find that

p(J)dJ ∝ s1s2|s21 − s22|α[(1− s21)(1− s22)]α(N−6+α)/2ds1ds2dµ(U,V,W), (7)

where dµ(U,V,W) = dµ(U) for α = 1; dµ(V)dµ(W) for α = 2 and dµ is the invariant
(Haar) measure for the unitary group. In deriving Eq. (7), we have made use of the fact that160

det(I−J†J) = det(I−Σ†Σ) = (1− s21)(1− s22). Observing the right hand side of Eq. (7), we
note that the singular values and singular vectors of J are statistically independent, and the
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Figure 2: Histograms of retardance for on-diagonal sub-blocks (α = 1) and off-diagonal sub-blocks (α = 2).
Data points were calculated from 106 realisations of COE matrices. Fitting curves are given by Eq. (10).

joint probability density function for s1 and s2 is proportional to the function multiplying the
differentials. In addition, we see that the matrices U, V and W are all uniformly distributed
unitary matrices, irrespective of N . It follows that the diattenuation and retardance vectors165

are uniformly distributed on the surface of the Poincaré sphere, meaning there are no pref-
erentially transmitted (reflected) polarisation states across the entire ensemble of scattering
matrices.

We now derive probability density functions for R and D. For α = 1, we see that
JR = UUT is distributed according to COE(2). For α = 2 on the other hand, JR = VW† is
the product of two uniformly distributed unitary matrices and is thus distributed according
to CUE(2). Notably, there is no N dependence on the statistics of the retarder matrix in
either case. The joint density for the eigenvalues of JR is given by [45]

p(θ1, θ2) ∝ |eiθ1 − eiθ2|α. (8)

The probability density function for the retardance can therefore be computed by the integral

p(R) ∝
∫ 2π

0

∫ 2π

0

|eiθ1 − eiθ2|αδ[R−min(|θ1 − θ2|, 2π − |θ1 − θ2|)]dθ1dθ2, (9)

where δ is the Dirac delta function. From Eq. (9), we can make the change of variables
x = θ2 − θ1, y = θ2 + θ1 and evaluate the integral piecewise, yielding

p(R) =

{
1
2

sin(R
2

) if α = 1,
2
π

sin2(R
2

) if α = 2,
(10)

which we have plotted as solid lines in Figure 2. The data points (circles in Figure 2) were
calculated by randomly generating 106 COE matrices and calculating R according to Eq. (4)170

from two different sub-blocks of S: one on-diagonal and one off-diagonal. As can be seen,
the theoretical curves fit the data points excellently. In both cases we see that the density is
monotonically increasing and peaks at R = π. Therefore, in terms of relative phase changes
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Figure 3: Histograms of diattenuation for sub-blocks of scattering matrices of different sizes. Data points
were calculated from 106 realisations of COE matrices. Fitting curves are given by Eq. (13).

experienced by the incident field, the scattering medium is most likely to behave as a half-
wave plate. We note that our result here for α = 2 is similar to that derived elsewhere for175

the retardation angle in optical fibres using a random Jones matrix model, albeit using a
slightly different definition for retardance [46].

The probability density function for the diattenuation can be found by integrating the
joint density for s1 and s2 in Eq. (7). Explicitly, we have

p(D) ∝
∫ 1

0

∫ 1

0

s1s2|s21 − s22|α[(1− s21)(1− s22)]α(N−6+α)/2δ

(
D −

∣∣s21 − s22∣∣
s21 + s22

)
ds1ds2, (11)

which, after some manipulation, can be reduced to

p(D) ∝ Dα

(1 +D)α+2

∫ 1

0

xα+1
[
(1− x)

(
1− 1−D

1 +D
x
)]α(N−6+α)/2

dx. (12)

The resulting integral in Eq. (12) can be expressed in terms of the hypergeometric function

2F1 (see 3.197, 3. of Ref [47]). After normalising the resulting densities, we find that

p(D) =

16N−2
N+1

D
(1+D)3 2F1

(
5−N
2
, 3; N+3

2
; 1−D
1+D

)
if α = 1,

48N−2
N

D2

(1+D)4 2F1

(
4−N, 4;N + 1; 1−D

1+D

)
if α = 2.

(13)

Some example plots of these densities for different values of N are shown in Figure 3 for both
α = 1 and α = 2. As with our retardance calculations, the data points were computed with
Eq. (4) using 106 realisations of COE matrices for each matrix size. Our result for α = 1 is180

exact and fits very well for all matrix sizes. For α = 2, our approximate result fits the data
reasonably well for N ≥ 12. While not shown here, for N < 12 we observed deviations from
the simulated data, particularly in the minimal case N = 4, which corresponds to single-mode
scattering. As N increases however, the approximation improves.

As can be seen, with the exception of N = 4 for α = 1, the densities are strictly in-185

creasing and peak at D = 1 for all values of N . We therefore find that, when viewing the
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outgoing field in a single mode, it is most probable that the scattering medium behaves like
a polarising filter that totally rejects one polarisation state. Since the diattenuation vector is
uniformly distributed on the Poincaré sphere, the polarisation state that is rejected is com-
pletely random. Furthermore, since different sub-blocks of S are uncorrelated, the rejected190

polarisation states in different outgoing modes are also uncorrelated. Since the diattenuation
and retardance statistics are independent, we conclude that the most probable behaviour of
a Jones matrix within the scattering matrix is that of a polarizing filter followed by a half-
wave plate, both with randomly oriented and independent eigenvectors. We note that the
mean diattenuation is lower for the α = 1 case. When diattenuation is large, the scattered195

polarisation state tends to be close to the diattenuation vector, regardless of the incident
polarisation state. This would result in a loss of correlation between the incident and scat-
tered polarisation states. As discussed in the previous section, we found that the incident
and scattered polarisation states were partially correlated in the back-scattering direction,
which is therefore consistent with a lower average diattenuation.200

In optical scattering experiments, the number of modes admitted by a system tends to
be very large, typically on the order of tens of millions per millimetre of illuminated surface
area for visible light [48]. It is therefore useful to consider the large N limit of Eq. (13). This
limit may be taken directly using the asymptotic relation

2F1(a−N, b; c+N ; z) ∼ 1

(1 + z)b
, (14)

which holds for large N and arbitrary a, b and c [49]. Applying this result to Eq. (13) and
renormalising the resulting densities, we find the simple results

p(D)N→∞ =

{
2D if α = 1,

3D2 if α = 2.
(15)

Observing again Figs. 2 and 3, these asymptotic densities closely match the densities for N =
100, which is well below the number of modes expected in a typical scattering experiment.
Interestingly, Eq. (15) can also be derived using a Gaussian approximation for the elements
of the Jones matrix. Details of this calculation can be found in Appendix A. A summary of
the mean, variance, skewness and kurtosis of the densities given in Eq. (10) and (15) is given205

in Table 1.

4. Conclusion

To summarise, we have explored the consequences of applying the COE to random vector
scattering matrices that incorporate the polarisation properties of light. When viewing the
outgoing field in a single mode away from the backscattering direction, the polarisation210

state of the scattered field is uniformly distributed over the Poincaré sphere for different
realisations of the scattering matrix. The average Mueller matrix is thus a pure depolariser.
In the backscattering direction, the average Mueller matrix is only partially depolarising and
the scattered fields are distributed non-uniformly on the Poincaré sphere, tending to focus
around the incident polarisation state. The distributions for retardance and diattenuation215

associated with Jones matrices within S are non-trivial. For a given instance of a scattering
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Variable α Mean Variance Skewness Kurtosis

D

1
2

3

1

18
−2

5

√
2

12

5

2
3

4

3

80
−2

3

√
5

3

65

21

R

1 2 4(π − 3)
3π2 − 12π + 8

4(π − 3)
3
2

π3 − 6π2 − 12π + 66

2(π − 3)2

2
π2 + 4

2π

π4 − 48

12π2

24
√

3(π4 − 12π2 + 16)

(π4 − 48)
3
2

9(π8 − 800π4 + 7680π2 − 3840)

5(π4 − 48)2

Table 1: Statistics of diattenuation and retardance distributions. Retardance statistics were calculated using
Eq. (10) and diattenuation statistics using Eq. (15).

matrix, it is most probable that a random scattering medium acts as a serial combination
of a polarising filter followed by a half-wave plate with diattenuation and retardance vectors
uniformly distributed on the Poincaré sphere.

As a model for random scattering matrices, the COE is clearly limited and is unable220

to describe anisotropic scattering. Nevertheless, compared to more sophisticated random
matrix models, the COE is mathematically simple and may serve as a reference model for
fully depolarising media. The task of exploring more general random matrix ensembles is
left for future studies.

Appendix A. Alternate asymptotic derivation225

In this section we outline an alternative derivation of Eq. (15). For large N , the elements
of a matrix drawn from the COE can be treated as uncorrelated, zero-mean complex Gaussian
random variables with variances given by [50]

〈|Sij|2〉 ∼
1 + δij
N

. (A.1)

Let J be a 2× 2 sub-block of S, and let T =
√
NJ. Notably, T has the same diattenuation

as J. By considering Eq. (A.1), it can be shown that T has joint density given by

p(T) ∝ exp
(
− 1

3− α
tr(T†T)

)
. (A.2)

Taking a singular value decomposition of T as in the main text and changing variables yields
the density for the singular values of T, s1 and s2, which is given by

p(s1, s2) ∝ s1s2|s21 − s22|α exp
(
− 1

3− α
(s21 + s22)

)
. (A.3)
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The probability density function for the diattenuation can therefore be calculated from the
integral

p(D) ∝
∫ ∞
0

∫ ∞
0

s1s2|s21 − s22|α exp
(
− 1

3− α
(s21 + s22)

)
δ

(
D −

∣∣s21 − s22∣∣
s21 + s22

)
ds1ds2, (A.4)

which can be evaluated to yield the density given in Eq. (15).
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