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Abstract: A theoretical analysis of detection limits in swept-frequency
whispering gallery mode biosensing modalities is presented based on
application of the Cramér-Rao lower bound. Measurement acuity factors are
derived assuming the presence of uncoloured and 1/ f Gaussian technical
noise. Frequency fluctuations, for example arising from laser jitter or
thermorefractive noise, are also considered. Determination of acuity factors
for arbitrary coloured noise by means of the asymptotic Fisher information
matrix is highlighted. Quantification and comparison of detection sensitivity
for both resonance shift and broadening sensing modalities are subsequently
given. Optimal cavity and coupling geometries are furthermore identified,
whereby it is found that slightly under-coupled cavities outperform critically
and over coupled ones.
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1. Introduction

Recent years have seen great advances in the development of micro and nanoscale biosensors,
motivated by the promise of single molecule sensitivity. Sensitive and label-free detection of
individual biomolecules such as viruses, DNA and proteins, is particularly important for im-
plementing next-generation (potentially on-chip) clinical diagnostic assays. Of particular im-
portance are optical resonator based biosensors, which are rapidly emerging as one of the most
sensitive biosensing technologies, capable of providing not-only label-free detection down to
the single molecule level [1–3], but also allowing multiplexed sensing [4, 5], aqueous work-
ing environments [6,7] and cost-effective integration on micro-chips [8,9]. Whispering gallery
mode (WGM) resonators, for example, exhibit high sensitivity by virtue of their high quality
(Q) resonances (fundamentally limited to ∼ 1010 [10]) and large surface intensities, which can
be further augmented by plasmonic nanoantennae [11–13]. As with all experimental methods,
however, noise fundamentally limits the achievable sensitivity levels. Knowledge of such noise
imposed detection limits allows for improved system design and benchmarking and thus war-
rants closer study.

WGM based sensors can employ a number of different operational principles, for exam-
ple, frequency locking or swept-frequency modalities, transmission vs. back-scattering detec-
tion, passive or active cavities and also ring-down measurements. Perhaps the more commonly
used and easiest to implement of these strategies is the swept-frequency modality, in which the
transmission of a source coupled to a resonator is monitored as the frequency of the source is
varied. Whilst detection limits have been extensively studied for a number of these configura-
tions [14–17], analysis of swept-frequency based biosensors is inherently more complex and
has thus not yet been comprehensively covered. To date, attempts to quantify the detection
limits of swept-frequency WGM sensors have predominantly been based on either qualitative
arguments or empirical estimates [18–22] and hence lack the satisfaction associated with more
rigorous treatments. A number of papers have attempted to adopt a more theoretical approach
with Lopez-Yglesias et. al. [23], for example, considering different physical interactions be-
tween a WGM sensor and an adsorbed molecule which can affect induced sensing signals.
Noise sources were, however, given only minimal consideration. Various fundamental noise
sources, such as thermorefractive noise, were considered in the works of Matsko et. al. [24]
and Gorodetsky et. al. [25], however these treatments are not immediately transferable to a
biosensing context thus hampering their utility. This paper thus attempts to bridge this gap and
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formulate biodetection limits when using swept-frequency WGM microsensors based upon a
rigorous consideration of the noise sources deriving from information theoretic tools. Atten-
tion is limited to two dominant noise sources, namely additive Gaussian detector noise and
thermorefractive noise/laser fluctuations, since these are frequently the limiting factors within
biosensing experiments. Noise is assumed to be uncoloured, however calculation for arbitrary
power spectra is discussed and illustrated for pink (1/ f ) noise. Moreover, to the authors knowl-
edge, all preceding treatments, perhaps with the exception of [19], have considered detection
limits based upon monitoring reactive resonance shifts only. Measurements of linewidth change
are however currently emerging as a complementary sensing mechanism. We therefore also for-
mulate detection limits in this regard. Beyond the insight into system performance that quantifi-
cation of detection limits affords, such knowledge allows for optimisation of sensor geometry
and other operational parameters. Optimisation of this nature therefore constitutes a further aim
of this work.

The structure of this article is as follows. In Section 2 we first formulate the measurement
problem and describe the origin and nature of relevant noise sources, before proceeding to de-
scribe fundamental detection limits imposed on measuring reactive shifts and linewidth changes
by means of an information theoretic analysis in Section 3. Detection limits derived in Sec-
tion 3, although sufficient to describe the problem, are rather formal in nature, therefore in
Section 4 we apply our results to biosensing experiments. Consequently, optimal WGM sens-
ing configurations are identified for different sensing scenarios, and the performance of reac-
tive shift and line broadening sensing modalities compared. Section 5 continues by considering
robustness of optimal configurations to environmental temperature changes, before Section 6
finally considers how optimisation results are altered in the presence of additional loss mech-
anisms, such as surface roughness or nanoantenna induced heating and scattering losses. Final
conclusions are drawn in Section 7. A number of appendices are also given providing further
elaboration on our mathematical derivations where necessary.

2. Measurement and noise in WGM sensing

Whispering gallery mode biosensors commonly operate by monitoring the transmission prop-
erties of a swept laser source coupled to a microresonator e.g. via a tapered fibre or prism based
setup [1]. When the laser frequency ω is tuned close to a resonance of the microcavity (with
frequency ω0 and full width at half maximum (FWHM) Γ), a Lorentzian dip is observed in the
transmission profile of the input beam (see Fig. 1) as described by

I(ω) = I0

[
1− AΓ2/4

(ω−ω0)2 +Γ2/4

]
, (1)

where I0 is the incident beam power and A describes the coupling efficiency to the microcavity
(or transmission depth). An important point to note, however, is that whilst Eq. (1) describes a
continuous lineshape, in practice discrete samples are taken at a fixed interval ∆Ω , βΓ over
a finite bandwidth Ω ,WΓ. In what follows we shall denote the discrete sampling frequencies
and associated power level as ω j and I j = I(ω j) respectively. For a single laser sweep a total of
NΩ data points, Id, j, are collected ( j = 1,2, . . . ,NΩ), which for convenience we stack into a data
vector Id = (Id,1, Id,2, . . . , Id,NΩ

). For each laser scan the parameters ω0, Γ and A can then be
estimated, for example, by numerical fitting. Determination of resonance shifts and broadening
from, say, the presence of a biomolecule [6,7,19] follows by comparing the determined param-
eters for subsequent scans. The accuracy to which each of the parameters can be determined,
however, is limited by noise which is inescapably present in the measurement process. Such
noise can be of either a technical or fundamental nature and consideration should be given to
both in determining detection limits of WGM sensors.
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Fig. 1. Schematic of observed transmission lineshape, induced red shift and line broad-
ening upon binding of biomolecules to the microcavity surface, illustrating definitions of
quantities used in this work.

Technical noise arises from poor experimental setup and can include factors such as stray
light impinging upon photodetectors and vibrations. Generally, such noise sources are statisti-
cally independent and are well described by a Gaussian probability distribution function (PDF)
by virtue of the Central Limit Theorem. Noting that typical power levels in WGM biosensing
experiments are . 1 mW, it is furthermore reasonable to adopt a classical description of light,
such that the net effect of technical noise on the measured power Id, j can be described by the
continuous PDF

pId (Id, j;ω0,Γ,A) =
1√

2πσ2
d

exp

[
−1

2

(
Id, j− I j

σd

)2
]
, (2)

where σ2
d is the variance of the detected intensity. If multiple independent noise sources con-

tribute to the total technical noise, σ2
d is found by adding the associated variances of individual

noise sources. Detector noise is perhaps the most intuitive and common noise such that we shall
hereafter refer to technical noise simply as detector noise.

Fundamental noise limitations, on the other hand, can arise from a number of different phys-
ical phenomena. Thermodynamic fluctuations within the cavity and surrounding medium, for
example, give rise to both thermorefractive and thermoelastic noise, from variations in the re-
fractive index and cavity size respectively [25, 26]. Additionally, temperature fluctuations can
cause changes in the coupling distance, albeit these can be negated by means of free space
coupling [19]. Microresonators are furthermore interrogated by means of laser light which, due
to its quantised nature, can result in photothermal, optoelastic and phase noise. A good dis-
cussion of the effects of these noise sources can be found in [24], however, for our purposes
it is sufficient to consider only thermorefractive noise since this was found to be dominant
(although methods of suppressing its influence have been proposed [27]). Fluctuations in the
refractive index within the mode volume have a dual effect of modifying both the frequency
and linewidth of the microcavity resonance. Frequently in the literature, fluctuations in the
resonance linewidth are assumed to be negligible; an assumption based on empirical observa-
tion [28, 29]. Theoretical justification of this approximation is, however, given in Appendix A,
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such that we too only consider fluctuations in the resonance frequency. Making the replace-
ment ω0→ ω0 +ωt in Eq. (1), where ωt represents the thermorefractive resonance shift from
the unperturbed resonance frequency, allows us to describe the effect of thermorefractive noise
via the PDF

pωt (ωt) =
1√

2πσ2
t

exp
[
−1

2
ω2

t

σ2
t

]
, (3)

where a Gaussian PDF is again assumed. Equivalently, the resultant random fluctuations in the
measured power are described by

pId (Id, j;ω0,Γ,A) =
∫

∞

−∞

δ (Id, j− I j)pωt (ωt)dωt (4)

=
1√

2πσ2
t

I0AΓ2
j

4Λ j(I0− Id, j)2 exp

[
−1

2

∆2
j

σ2
t

]
exp

[
−1

2

Λ2
j

σ2
t

]
cosh

[
Λ j∆ j

σ2
t

]
, (5)

where Eq. (4) derives from the law of total probability, ∆ j = ω j − ω0 and Λ j =
Γ

2

[
I0A/(I0− Id, j)−1

]1/2. Whilst we have considered fluctuations in the central resonance fre-
quency of the WGM arising from thermorefractive noise, it is worthwhile noting that fre-
quency fluctuations can also arise from other sources, such as instabilities in the laser (typi-
cally ∼100 kHz – 1 MHz for tunable laser sources). Results given for thermorefractive noise
are hence equally applicable to laser fluctuations (jitter). In the presence of both thermorefrac-
tive noise and laser jitter, σ2

t is again found by adding the associated variances of each noise
source. Whilst not explicitly discussed here, our results have shown that symmetric sweeping
of the resonance peak (i.e. the laser frequency sweeps the interval ω ∈ [ω0−Ω/2,ω0 +Ω/2])
achieves greatest measurement accuracy. Only this case is therefore considered in what follows.

3. Fisher information and detection limits

Fisher information is a natural metric emerging from the field of statistical estimation, which
quantifies the performance of an ideal observer in estimating an original signal given a noise
corrupted version [30]. Although Fisher information shares many properties with the better
known Shannon information, such as superadditivity and positivity [31], the former is more
suitable for describing the measurement problem (as opposed to the information transmission
problem). In particular, the covariance matrix, Kw, for estimation of a parameter vector w,
which provides a convenient parameterisation of measurement precision, is lower bounded by
the inverse of the Fisher information matrix Jw viz.

Kw ≥ J−1
w , (6)

where the inequality implies the difference of the two matrices is positive definite and does not
necessarily hold element-wise. In our case w = (ω0,Γ,A). Eq. (6) is known as the Cramér-Rao
lower bound (CRLB) [32] and also implies the weaker set of inequalities σ2

wi
≥ 1/ [Jw]ii where

σ2
wi

is the variance for estimation of wi and wi ([Jw]ii) denotes the ith (diagonal) element of
w (Jw). It is important to note that the CRLB as expressed by Eq. (6) explicitly quantifies the
uncertainty achievable by any unbiased estimator and hence represents a fundamental limit to
measurement precision. Furthermore, by use of the maximum likelihood estimator the CRLB
can be asymptotically achieved [30]. A fuller discussion of Fisher information and properties
of the maximum likelihood estimator can be found in [30, 33] and references therein.

Within the context of biosensing, we do not directly measure the parameters w = (ω0,Γ,A),
but instead infer them from noisy power readings. As such the Fisher information matrix can
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be written in the form Jw =GTJIG, where G= ∂ I/∂w is a matrix of derivatives, T denotes the
matrix transpose and JI is the Fisher information matrix associated with estimation of the trans-
mitted power I. Initially, we assume that the noise on each data point is statistically independent
such that we can write pId (Id) = ∏

NΩ

j=1 pId (Id, j;ω0,Γ,A), yielding

[JI]i j = δi, j

∫
pId , j(Id, j)

(
∂ ln pId, j(Id, j;ω0,Γ,A)

∂ I j

)2

dId, j, (7)

where δi, j is the Kronecker delta. The case of dependent data samples will be discussed below.
Since each data sample is statistically independent we can invoke additivity of Fisher infor-
mation to give Jw = ∑

NΩ

j=1 JI j G j ⊗G j where ⊗ denotes the outer product and the shorthand
notation [JI] j j = JI j and G j = ∂ I j/∂w has been used.

In principle, the PDFs given by Eqs. (2) and (5) can be substituted directly into Eq. (7)
and calculated numerically, however, to gain further insight into the noise limitations we make
a number of approximations, such that analytic results follow. First considering the simpler
case of detector noise, as described by Eq. (2), we assume that the laser sweeping window
has a large bandwidth relative to the FWHM of the WGM resonance i.e. Ω > 2Γ, and that the
sampling interval is small i.e. ∆Ω� Γ. Under these conditions the summation in Eq. (7) can
be approximated by a continuous integral over frequency. Taking evaluation of [Jw]11 = Jω0,ω0
as an illustrative example we find

Jω0,ω0 =
NΩ

∑
j=1

1
σ2

d

(
∂ I j

∂ω0

)2

≈
A2I2

0

4σ2
d ∆Ω

Γ
4
∫

∞

−∞

(ω0−ω)2

[(ω0−ω)2 +Γ2/4]4
dω =

A2I2
0

2σ2
d ∆Ω

π

Γ
. (8)

Similarly, evaluation of other elements of the Fisher information matrix can be performed,
ultimately yielding

Jw =
πI2

0

8σ2
d ∆Ω

 4A2/Γ 0 0
0 A2/Γ A
0 A 2Γ

 . (9)

Off diagonal elements of the Fisher information matrix represent correlations that exist between
estimates of different parameters, such that here we see that estimates of the transmission depth
and FWHM are correlated. Such a correlation is to be expected, since determination of the
FWHM requires an estimate of the dip depth. In practical biosensing, the transmission depth
is, however, of marginal or no interest and can hence be treated as a nuisance parameter [30].
Nuisance parameters, by virtue of the correlations mentioned above, reduce the amount of infor-
mation any measurement yields about the parameters of interest, and thus reduce the detection
limits. Within the framework of statistical estimation theory it can be shown that a reduced
Fisher information matrix can be defined, which in our case, and for the sake of completeness,
takes the form

Jw′ =

 Jω0,ω0 −
J2

ω0,A
JA,A

Jω0,Γ−
JΓ,AJω0,A

JA,A

Jω0,Γ−
JΓ,AJω0,A

JA,A
JΓ,Γ−

J2
Γ,A

JA,A

=
A2I2

0

16σ2
d ∆Ω

π

Γ

(
8 0
0 1

)
. (10)

In the remainder of this work, we will, however, not consider calculation of the reduced Fisher
information matrix, since it adds a level of mathematical complexity, which provides little addi-
tional insight. Instead, attention will be given to calculation of [Jw]11 = Jω0,ω0 and [Jw]22 = JΓ,Γ.
Applying the inequality σ2

wi
≥ 1/ [Jw]ii thus yields an expression for the minimum detectable
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resonance shift, ∆ωd, and linewidth change, ∆Γd,

∆ωd =
∆Γd

2
=

√
2β

π

σd

I0A
Γ. (11)

We can approach the problem for derivation of the detection limits in the presence of ther-
morefractive noise/laser jitter in a similar manner, however additional approximations and care
must be taken. We start by considering

Jω0,ω0 =
NΩ

∑
j=1

∫
∞

0

[
1

σ2
t
−

Λ2
j

σ4
t

sech2
(

Λ j∆ j

σ2
t

)]
pId, j dId, j. (12)

The summation for the first term can be easily performed, since by definition
∫

pId, j dId, j =
1, however, to evaluate the second term we again approximate the summation over j as an
integration over frequency, yielding

Jω0,ω0 ≈
NΩ

σ2
t
− 1

∆Ωσ5
t

√
2
π

∫
∞

0
Λ

2 exp
(
− Λ2

2σ2
t

)∫
∞

−∞

sech
(

Λ∆

σ2
t

)
exp
(
− ∆2

2σ2
t

)
d∆dΛ, (13)

where a change in the integration variable has also been performed. Further approximating
sechx ≈ exp[−x2/2], where the FWHM of the Gaussian has been chosen such that the Taylor
expansion of the functions match up to quadratic order, allows evaluation of Eq. (13) such that

Jω0,ω0 ≈
1
σt

[
NΩ

σt
−
√

π

∆Ω
U
(

1
2
,0,

1
2

)]
=

1
σt∆Ω

[
Ω

σt
−1.416

]
, (14)

where U(a,b,z) is the confluent hypergeometric function [34]. Finite integration limits for in-
tegration over ∆ can also be taken, leading to an additional term in the kernel of the integration
over Λ of the form erf

[
Ω

2
√

2σt

√
1+ Λ2

σ2
t

]
. Noting, however, that the argument of the error func-

tion is large, we can approximate this term as unity, hence also yielding Eq. (14). We note that
due to the approximations taken the Fisher information expressed by Eq. (14) can adopt nega-
tive (i.e. unphysical) values when Ω ≤ 1.416σt . Fortunately, this condition is only satisfied in
pathological noise scenarios, such that Eq. (14) gives a good estimate of the Fisher information
for estimation of ω0 (in the presence of thermorefractive noise/laser jitter) in most cases. Our
detection limit is then given by

∆ωt =

√
βΓσt

WΓ/σt −1.416
≈ σt

√
β

W
, (15)

where the second approximation holds for σt �WΓ. Eq. (15) shows that the detection limit
scales with the number of sampling points as N−1/2

Ω
= (β/W )1/2.

Derivation of JΓ,Γ follows in a similar manner to that shown here for Jω0,ω0 , however greater
care must be taken with the size of the integration window, so as to avoid divergent integrals.
For completeness the derivation is presented in Appendix B and only the final result is given
here; chiefly

JΓ,Γ ≈
2σt

3Γ2∆Ω

Ω

2σt

[
3+
(

Ω

2σt

)2
]
, (16)

such that

∆Γt = 2σt

√
3β

W
Γ2

24σ2
t +W 2Γ2 ≈ 2σt

√
3β

W 3 , (17)
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Fig. 2. (a) Variation of intrinsic quality factor Q0 of a fused silica WGM resonance in water
with microcavity radius R. (b) Variation of detection limits ∆ωd,t and ∆Γd,t (normalised to
resonance linewidth) with WGM Q factor.

where the second approximation again holds when σt �WΓ. By virtue of the dependence of
∆ωt,d and ∆Γt,d on the resonance linewidth, the detection limits imposed by noise inherit a de-
pendence on the size of the microresonator, as depicted in Fig. 2. Specifically Fig. 2(a) shows
the dependence of the intrinsic (i.e. limited by radiation and absorption losses) quality factor
Q0 = ω0/Γ for a fused silica microsphere resonator of radius R immersed in water, supporting
a fundamental TE WGM (first radial order) resonance at 780 nm. Curves in Fig. 2 were found
by numerically solving the exact Mie resonance conditions of a microsphere [11]. Note, that
the resonance spectrum of a microsphere contains discrete spectral peaks since only particular
wavelengths can satisfy the associated resonance conditions. Similarly only microcavities with
the correct size can support a WGM at a fixed wavelength, such that the curves in Fig. 2 are
not continuous but composed of discrete points. These points are densely packed however, pro-
ducing the appearance of a continuous curve. For cavities smaller than ∼ 40 µm it can be seen
that radiation losses dictate the resonance lifetime, whilst for larger resonators water absorp-
tion becomes dominant, producing an approximate linear relationship between intrinsic quality
factor and resonator size. This linear dependence arises since for larger l WGMs a greater
proportion of the mode volume lies within the cavity and not in the surrounding absorbing
host. It should be noted that for very large resonators of radius & 1 mm, absorption within the
cavity volume dominates, however for common biosensing applications resonators of this size
are not desirable and hence we neglect cavity absorption in what follows. Figure 2(b), mean-
while, plots the size dependence of the various detection limits ∆ωt,d and ∆Γt,d (normalised
to linewidth). Simulation parameters were β = 10−3, W = 20, σd = I0/5. To model the ther-
morefractive noise/laser jitter an equivalent temperature fluctuation of ∆T = 5 mK was taken
such that σt = (ω0∆T/nc)dnc/dT , where ñc = nc + iκc is the complex refractive index of the
microcavity and dnc/dT = 1.45×10−5 [25]. This value of ∆T gives comparable noise levels to
detector noise. Specifically, for these simulation parameters we find ∆ωd ≈ 2.5 fm, ∆Γd ≈ 5 fm,
∆ωt ≈ 2 fm and ∆Γt ≈ 0.3 fm for Q = 107 at 780 nm. Clear differences between detector and
thermorefractive noise can be seen in Fig. 2. In particular, the detection limits for detector noise
scale linearly with linewidth (normalised detection limits are hence a constant function of Q),
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whilst those for thermorefractive noise exhibit a more complicated dependence, albeit mono-
tonically increasing, i.e. smaller spheres are less susceptible to thermorefractive noise due to
a small modal volume (a point further discussed later). We note, however, that suppression of
laser jitter can be achieved experimentally [35], such that pure thermodynamical fluctuations
dominate. In this case a value of ∆T ∼ 30 µK is more appropriate [25].

The above analysis was based on the simplifying assumption that each data sample was sta-
tistically independent or equivalent all noise sources are white in nature. In reality, noise sources
in WGM sensors can be colored, for example, electronic components can give rise to pink (1/ f )
noise, whilst thermorefractive noise inherently has a non-uniform power spectrum [25]. Con-
sequently, the covariance matrix KI (and hence JI) is no longer diagonal. Knowledge of the
spectral power density of the noise sources, e.g. [15,25], however, allows easy implementation
of a whitening filter [30] so as to decorrelate data samples, such that all previous (and subse-
quent) results are applicable. Use of whitening filters of this nature are commonplace in signal
processing.

Determination of exact detection limits in the presence of colored noise is, nevertheless,
still possible within the framework of the Fisher information and the CRLB. To illustrate the
methodology we briefly consider the case of pink detector noise, as may arise from electronic
based detection, and assume the underlying random process is at least wide-sense stationary.
Furthermore, we again invoke the fine sampling limit used above, whereby we can use the
asymptotic form of the FIM [36]

[JI] jk ≈
1

2π

∫
π

−π

1
Φ(s)

exp[is( j− k)]ds, (18)

where Φ(s) = ∑
∞
r=−∞[KI] j, j+r exp[−isr] is the power spectral density of the noise process. Φ(s)

can be easily related to the continuous power spectral density (see e.g. Eq. 14(b) of [36]). Owing
to the assumption of wide-sense stationarity, KI is Toeplitz, such that Φ(s) is independent of j.
Letting Φ(s) = A/|s| for s1 ≤ s≤ s2, that is say assume pink noise, we find

[JI] jk ≈
π

Ap2 (cos p+ psin p−1) , (19)

where p = ( j− k)π . From the Wiener-Khinchin theorem it can further be shown that K j j =
A ln(s2/s1), which we also equate to σ2

d . The laser sweep time τ is always finite in practice, such
that the lower frequency region of the noise spectrum can not be observed and it is reasonable
to adopt s1 = 2π/τ . The upper frequency bound can furthermore be selected to match Nyquist’s
frequency in turn yielding s2/s1 = 2Ω/∆Ω = 2W/β . Numerical computation of Jw = GTJIG
can then be easily performed for a given set of experimental parameters. For the parameters
considered above, we find that ∆ωd ≈ 0.0113Γ and ∆Γd ≈ 0.0391Γ, which importantly repro-
duces the linear dependence on linewidth seen in Eq. (11). Analogous results to those derived
below for white noise thus hold for pink noise when an appropriate noise variance is used.

4. Optimal whispering gallery mode biosensors

4.1. Resonance shifts

Treatment of the detection problem, as given in the preceding sections, is largely theoretical
such that a formulation with greater ease of application to biosensing problems is desirable.
With this aim in mind, we recall the formalism presented in [20], wherein the minimum de-
tectable number of bioparticles, N, is defined as the ratio of the minimum resolvable frequency
shift to the shift induced by a single biomolecule. The latter is given by the well known reactive
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sensing principle [7];

δω

ω0
=−ε0εsRe[α]

|E(rp)|2

4U
, (20)

where ε0 is the permittivity of free space, ε̃s = εs + iηs is the relative permittivity of the host
medium, |E(rp)|2 is the local field intensity at the position of the bioparticle of excess polar-
izability α and U = 1

2 ε0εs
∫
|E(r)|2dV is the total electromagnetic energy density stored in the

WGM. For small (� λ ) spherical particles of radius b we have α = 4πb3(ε̃pt− ε̃s)/(ε̃pt +2ε̃s),
where ε̃pt is the permittivity of the particle. Eq. (20) can be shown to be consistent with a
quantum treatment [14]. In [20] it was thus shown for a particle binding on the equator of a mi-
crosphere of radius R supporting a WGM of order l and quality factor Q = ω0/Γ and immersed
in a host medium of refractive index ñs = ns + iκs that the minimum number of detectable
bioparticles is given by

N =
∆ω

|δω|
=

(n2
c−n2

s )

Re[α]

R3

|Yll(π/2)|2
F
Q
, (21)

where Yll(θ) represents the usual spherical harmonic functions, albeit with the dependence
of the azimuthal angle φ omitted, since this is irrelevant to the modulus. High Q WGMs are
associated with high orders such that we can make the approximation

|Yll(θ)|2 ≈
1

4π3/2

2l +1
l1/2 sin2l

θ (22)

for computational ease. Furthermore, F = |∆ω|/Γ represents a so-called measurement acuity
factor. Whilst in [20] empirical values of F were taken, we can, by means of Eqs. (11) and
(15), now provide a theoretical expression, which can either be used for comparison with ex-
perimental observations or for system design. For example, in the presence of detector noise we
have F =F0/A where F0 =

√
2β/π σd/I0 is the measurement acuity for a critically coupled mi-

croresonator. Within an experimental context, it should be observed that if the sampling interval
is scaled with the linewidth of the resonance, that is to say β is fixed (recall ∆Ω , βΓ), F0 is
a constant determined by the experimental configuration, as is consistent with the assumptions
made in [20]. Importantly, however, if the sampling interval ∆Ω is a fixed experimental parame-
ter, then the measurement acuity scales as Γ−1/2, i.e. it is dependent on the quality of the sensing
WGM. In what follows we shall consider only the former case. Another important feature aris-
ing from our treatment is that the dependence of the measurement acuity on coupling losses
comes to the fore. In particular we have Q−1 = Q−1

0 +Q−1
c and A = 4Q0Qc/(Q0 +Qc)

2 [37],
where Q0 is the intrinsic quality factor of the WGM and Qc describes coupling losses. For
example, for a prism coupled WGM it has been shown that Qc can be related to the coupling
distance, d, viz. [38]

Qc =

√
2π5nc

n2
p−n2

c
(n2

c−n2
s )

(
R
λ

)3/2

exp[2γd], (23)

where np is the refractive index of the coupling prism and γ = (2π/λ )
√

n2
c−n2

s . For additive
Gaussian (detector) noise we thus finally find

N =
(n2

c−n2
s )

Re[α]

R3

|Yll(π/2)|2
F0

Q0

(1+Qc/Q0)
3

4Q2
c/Q2

0
. (24)
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Fig. 3. (a) Minimum detectable number of influenza A (InfA) virons, N as a function of
microcavity radius R as set by detector noise for different coupling distances, d. Solid blue
curve corresponds to the optimal coupling distance. (b) As (a) for the optimal coupling
distance albeit with the addition of thermorefractive noise of varying magnitude as set
by the temperature fluctuations ∆T . Solid blue curve corresponds to detector noise only.
Dashed curves show detection limits associated with the presence of thermorefractive noise
alone. Solid blue lines in (a) and (b) are equivalent.

In light of Eq. (24) it can first be observed that when the coupling distance (and hence coupling
loss) is fixed, minimisation of Eq. (24), by means of varying the microcavity size, reduces to
the situation discussed in [20] and represents a locally optimal solution. To illustrate this point,
Fig. 3(a) shows the calculated N for detection of influenza A (InfA) virons (with refractive
index 1.45 and radius 50 nm) using prism coupled (np = 1.77) fused silica WGM microcavities
excited at 780 nm of differing radii and for differing coupling distances. Refractive index data
for fused silica and water were taken from [39] and [40] respectively.

Coupling distance can, however, generally be adjusted and provides a further degree of free-
dom for optimisation in any experimental setup. It can easily be shown analytically that N is
minimised when Qc/Q0 = 2 (or equivalently A = 0.89) as depicted in Fig. 4(a). In contradic-
tion to common wisdom, Qc/Q0 = 2 implies that optimal detection can be achieved when the
microresonator is slightly under coupled rather than critically coupled. This result arises since
we have shown that optimal detection simultaneously requires a large transmission depth A
and a narrow linewidth. Although critical coupling offers the largest transmission depth [41], it
also has a slightly larger linewidth than the under coupled regime. Furthermore, with regards to
Fig. 4(b) it is evident that the under coupled regime always outperforms the over coupled case
by virtue of the higher Q factors for under coupled modes.

For the parameters given above, the optimal sphere radius is found to be R = 46.8 µm with
a coupling distance of 1.17 µm implying that, at best, ∼ 10−2.2 InfA virons can be detected
at 780 nm, as shown by the solid blue curve in Fig. 3. These calculations were performed
assuming only detector noise to be present. Variation of the magnitude of the detector noise,
σd , merely scales the detection limit N in a linear fashion and does not alter the optimal cavity
size. Accordingly, it is also noted that the same optimal sphere radius follows in the case of pink
noise. Allowing for the presence of thermorefractive noise (arising from 2.5 mK temperature
fluctuations), however, causes the optimal cavity size to drop to 41.6 µm whereby N ≈ 10−1.7.
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Fig. 4. (a) Variation of (1+Qc/Q0)
3/(Qc/Q0)

2 factor, describing coupling loss depen-
dence of minimum number of detectable particles, with Qc/Q0. A clear minimum is ex-
hibited at Qc = 2Q0. (b) Variation of (1+Qc/Q0)

3/(Qc/Q0)
2 with transmission depth A

in the over- and under-coupled regime. Dashed black line corresponds to A = 0.89, i.e.
Qc = 2Q0

Evidently, these figures are below the single InfA viron limit given the noise levels chosen.
Whilst Fig. 4 shows an optimal microcavity radius of 46.8 µm, it is important to mention

that this value is strongly dependent on the operating wavelength, principally due to wave-
length dependent absorption and dispersion of water. To highlight this point, Table 1 shows
the calculated globally optimal microcavity size and coupling distance for a set of common
wavelengths ranging from the blue to the infrared end of the optical spectrum. Decreased water
absorption in the blue region of the spectrum gives significantly better detection limits than in
the red region as would be expected. For example, over two orders of magnitude reduction in N
between operating wavelengths of 780 nm and 410 nm can be seen such that when operating at
410 nm detection of a single bovine serum albumin (BSA) is possible. For wavelengths smaller
than 410 nm detection limits fall due to increased water absorption. Furthermore, our calcula-
tions show that smaller microcavities allow more sensitive measurements in the blue region of
the spectrum.

Table 1. Calculated optimal parameters for differing wavelengths. Optimal parameters for
detection of BSA monolayer for λ = 1550 nm and 1300 nm were beyond computational
bounds.

InfA viron BSA monolayer
λ Q0 Ropt dopt log10 Nopt Q0 Ropt dopt log10 σs,opt

(nm) (µm) (µm) (µm) (µm) (m−2)
1550 1.30×105 60.64 0.972 1.23 – > 4000 – –
1300 1.79×105 53.07 0.866 0.92 – > 4000 – –
780 1.51×108 46.80 1.169 -2.23 7.71×108 202.5 1.109 10.20
633 1.52×109 41.18 1.127 -3.41 2.00×109 50.9 1.123 9.20
410 7.95×109 26.63 0.799 -4.65 8.69×109 28.2 0.799 8.32
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Turning attention to the case of thermorefractive noise, the above analysis can be applied in
a similar manner, yielding a measurement acuity of F = (σt/Γ)(β/W )1/2 and detection limit
given by

N = σt
(n2

c−n2
s )

Re[α]ω0

R3

|Yll(π/2)|2

√
β

W
. (25)

Interestingly, we here see stark differences when compared to the behaviour of detector noise.
For example, we note that the detection limit set by thermorefractive noise is independent of
coupling and cavity losses and hence scales with an approximate R3 dependence. Smaller res-
onators are thus less susceptible to thermorefractive noise for fixed σt . Furthermore, smaller
cavities imply smaller mode volumes such that the variance of temperature fluctuations, σt are
also smaller [25]. Illustration of the dependence of N in the presence of pure thermorefractive
noise is shown in Fig. 3(b) by the green and red dashed curves for temperature fluctuations
of 2.5 and 5 mK respectively. A true R3 relation is not seen in Fig. 3(b) due to the weak size
dependence of the WGM index l. Given the monotonic dependence on R it is immediately ap-
parent, that in contrast to the case of detector noise, no optimal microcavity size exists when
thermorefractive noise is dominant.

Realistically, any experimental setup will be subject to both technical and fundamental
noise sources. Accordingly the experimental detection limit and optimal microcavity size is
set by competing requirements of both noise sources. Formally, noting that the individual noise
sources are independent and additive we can employ Stam’s inequality and the properties of
Fisher information to show ∆ω2 ≥ ∆ω2

d +∆ω2
t . Since we are concerned with the best case sce-

nario we shall hereafter assume equality holds. Intuitively, given the earlier results we would
anticipate that the optimal cavity size, in the presence of both detector noise and thermorefrac-
tive noise, would be smaller than that for detector noise alone. This expectation is indeed borne
out in numerical calculations as shown by the solid curves in Fig. 3(b) for differing magnitude
of thermal fluctuations, whereby it can be seen that for large cavities thermorefractive noise
is dominant over detector noise, whilst for small cavities the converse holds. Simulation pa-
rameters are as above. Given, however, that the optimal cavity size is now set by a balance of
competing noise effects it is important to note that the optimal cavity size is dependent on both
the sweeping window and sampling rate, since these determine the limit imposed by thermal
noise/jitter.

Hitherto we have considered perturbation of a WGM by a single particle, however, studies
of monolayers may also be of interest, for example in monitoring self-assembled biological
membranes and monolayers [4,42]. In this case it can easily be shown [43,44] that the resonance
shift of the WGM for a uniform monolayer of surface density σs is

δω

ω0
=− εs

(εc− εs)R
Re[α]σs. (26)

Letting this shift equal the smallest detectable shift as before, allows the minimum detectable
surface density to be determined. We note that the final result is of the same form as Eqs. (24)
and (25), albeit for a linear dependence on R (as opposed to R3) and differing prefactors. The
optimal coupling distances is hence once again given by Qc/Q0 = 2. Figure 5 shows an example
calculation of the minimum surface density for a monolayer of BSA. Optimality, for detection
of monolayers, is again determined by a balance of competing factors, however for monolayer
detection a greater resonator surface area is also desirable because it yields larger absolute
resonance shifts. Optimal resonator size is, therefore, significantly larger than for detection of a
single particle and, for the same simulations as above, is R = 202.5 µm. Optimal cavity size is,
however, seen to be much more sensitive to variations in the coupling distance than for single
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Fig. 5. As Fig. 3, but for detection of a monolayer of BSA molecules.

particle detection (Fig. 5(a)). Addition of thermorefractive noise is seen to reduce the optimal
resonator radius as before (Fig. 5(b)).

4.2. Linewidth changes

Upon binding to a microresonator, a particle introduces additional loss mechanisms, namely ab-
sorption losses in the particle itself and increased scattering losses. In many scenarios, the asso-
ciated linewidth change can be detected and provides an alternative and complimentary sensing
mechanism to reactive shifts [19]. Whilst Eq. (21) (and subsequent) describe the minimum de-
tectable number of particles when sensing via reactive wavelength shifts, equivalent expressions
for monitoring of resonance linewidth can be found. Denoting the linewidth change associated
with particle absorption and scattering by δΓabs and δΓsca respectively, we have [45, 46]

δΓabs

ω0
=

εs|Yll(π/2)|2

(εc− εs)R3 Im[α], (27)

δΓsca

ω0
=

ω3
0 n5

s |Yll(π/2)|2

3πc3(εc− εs)R3 |α|
2, (28)

where c is the speed of light. Emphasis must be made, however, that these expressions are
not valid in the case of mode splitting, which has also been proposed as a further sensing
mechanism [14, 47]. For dielectric particles at wavelengths far from molecular resonances, the
latter is dominant and yields a minimum detectable number of particles of

N =
∆Γ

δΓsca
=

6πc3(n2
c−n2

s )

|α|2n5
s ω3

0

R3

|Yll(π/2)|2
F0

Q0

(1+Qc/Q0)
3

4Q2
c/Q2

0
(29)

for detector noise, where F0 is as defined above and

N = σt
6πc3(n2

c−n2
s )

|α|2n5
s ω4

0

R3

|Yll(π/2)|2

√
3β

W 3 (30)
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Fig. 6. (a) Comparison of minimum detectable number of influenza virons, N as a function
of microcavity radius R when monitoring linewidth changes (blue and green) or resonance
frequency shift (red). Blue curves depict detection limits when broadening is dominated by
particle induced scattering losses for different noise sources. Green curves show detection
limits for broadening considering all particle induced broadening mechanisms. (b) As (a)
albeit for a 60 nm radius gold-silica nanoshells with resonance tuned to match the probing
WGM frequency. (inset) Dependence of dN/dT with respect to microcavity radius.

for thermorefractive noise. Blue curves in Fig. 6(a) depict the limits imposed on detection of
single InfA virons using linewidth broadening when scattering losses are the dominant broad-
ening process (dashed curve corresponds to detector noise only, dotted curve corresponds to
thermorefractive noise only and solid curve corresponds to the presence of both noise sources).
Of particular note is that thermorefractive noise plays a less significant role than detector noise,
such that an optimal cavity radius can again be identified.

Absorption in the particle can also significantly affect the linewidth broadening of a WGM,
especially if the analyte comprises metallic nanoparticles or fluorescent emitters (or if these
are used as labels) [12, 48, 49]. In this case the linewidth change is given by δΓ = δΓsca +
δΓabs + δΓcc. The additional δΓcc term has also been included since the presence of a scatte-
ring particle on a microresonator couples light into a (initially degenerate) counter-propagating
WGM [50]. When coupling is not strong enough to induced mode splitting, the unresolved
splitting of the two counter-propagating WGMs yields an additional broadening of magni-
tude δΓcc = 2|δω| [14, 51]. Since these additional induced loss mechanisms cause greater
line broadening, the particle induced changes in lineshape are larger and thus the associated
detection limit is better than when only scattering losses are present. Figure 6(a) highlights
this point by considering the detection limits, for influenza virons, associated with scattering
losses only (blue curves), as compared to inclusion of all broadening mechanisms, i.e. scatte-
ring, absorption and coupling to counter-propagating modes (solid green curve). Additionally,
and for comparison purposes, the detection limit for sensing using reactive shifts is also shown
in Fig. 6(a) (red curve). Similar detection sensitivity is exhibited by both detection modalities
for cavity sizes . 39 µm, however, as the microresonator size increases thermorefractive noise
begins to dominant the reactive shift detection limit, whilst sensing via line broadening is only
weakly affected (as discussed above). Ultimately biosensing via mode broadening is predicted
to have the better detection limit, with appropriate optimisation of cavity size and coupling dis-
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tance. Similar results were found in [19]. When particle absorption is large, e.g. for resonant
plasmonic nanoparticles, sensing via monitoring linewidth changes is superior for all cavity
sizes. To illustrate this point Fig. 6(b) shows the limits for detection of 60 nm radius gold-
silica nanoshells with plasmon resonance tuned to 780 nm i.e. to match the WGM frequency,
whereby over an order of magnitude is gained in detection sensitivity compared to the shift
based modality.

5. Thermal stability

Bulk temperature drifts are routinely present in biosensing experiments as evidenced by long
term trends in the WGM resonance frequency. However, given the thermal dependencies of
the refractive indices of both the microcavity and surrounding host medium, any tempera-
ture drifts will also cause a change in the detection sensitivity as described by Eqs. (24), (25),
(29) and (30). Robustness to such thermal drifts is naturally desirable in an experimental en-
vironment, such that the question as to the least temperature sensitive WGM sensor can be
posed. Assuming temperature drifts to be relatively small, we can consider the Taylor expan-
sion N(T ) = N(T0)+ (T −T0)dN/dT + · · · , such that we can use the temperature gradient of
the minimum detectable number of particles dN/dT to quantitatively assess thermal stability
of our previously derived detection limits. Restricting to detector noise only, the temperature
derivatives of Eqs. (24) and (25) can be determined (for simplicity we consider only the tem-
perature variation of the real part of the refractive indices of the cavity and surrounding water,
where we take dns/dT = −8.33×10−5 [52]). The results of such a calculation, assuming the
same simulation parameters as previously, are shown in the inset of Fig. 6(a) for both shift and
broadening sensing scenarios. Very similar temperature sensitivity is seen in both cases, how-
ever, when scattering losses dominate other broadening mechanisms the temperature sensitivity
is greater, due to the n5

s dependence of the scattering losses. Notably, the temperature gradient
is negative, such that temperature increases improve sensitivity and vice-versa, primarily be-
cause a temperature increase causes the refractive index contrast between the microcavity and
host medium to increase. Furthermore an optimal microresonator size can be identified, that is
to say a cavity size exhibiting minimal variation in detection sensitivity with temperature. In
all calculations performed the most temperature stable cavity was found to have a larger radius
than the optimal size associated with minimising N. Use of larger resonators is thus seen to be
experimentally beneficial, however the choice of cavity size, will depend on the relative impor-
tance assigned to detection sensitivity and temperature stability. Naturally, other considerations,
such as space restrictions for on-chip integration and fabrication capabilities may also play a
determining role.

6. Additional losses

Commonly, in any experimental realisation of a WGM biosensing experiment, the observed
Q factor is lower than theoretical expectations when considering only the intrinsic, absorption
and coupling losses. Such additional losses, can for example arise from surface roughness, scat-
tering defects in the resonator structure (e.g. air bubbles) and non-sphericity of the resonator.
Furthermore, in plasmon enhanced sensing the presence of the nanoantenna gives rise to ad-
ditional scattering and heating losses (see Section 4.2). The question then arises as to how
additional losses affect the preceding results. To address this problem it is necessary to return
to Eq. (21), which we write in the form N =C(R)F0/AQ, where now Q−1 = Q−1

0 +Q−1
c +Q−1

m
and Qm denotes the additional miscellaneous losses. As before we can consider the optimisa-
tion of the coupling distance and the resonator size independently. Fuller mathematical details
are given in Appendix C, however, we find that the new optimal coupling distance satisfies the
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relation

Qc

Q0
=

1
2

[
1+

√
1+9Qm

1+Qm

]
≈ 2− 2

3Qm
, (31)

where the latter approximation holds when Q−1
m � 1. Subsequently optimisation of the res-

onator size yields a shift in the optimal resonator size of

δR≈
2C(Ropt)

Q0Qm

∂Qm

∂R

[
(3Qm +2)

∂ 2[C(R)/Q0]

∂R2

∣∣∣∣
R=Ropt

]−1

. (32)

With the possible exception of ∂Qm/∂R, all quantities in Eq. (32) are positive. Consequently,
∂Qm/∂R dictates whether the optimal resonator size increases or decreases. For example, for
mechanisms whereby losses increase with the resonator size, such as surface roughness and
defect scattering, ∂Qm/∂R is negative, such the optimal resonator size decreases. In contrast,
however, given that larger microcavities have a larger proportion of the mode lying within the
resonator, scattering losses from nanoantenna decrease with larger resonator size. Consequently
∂Qm/∂R is positive, hence motivating the use of larger resonators. Equivalent results follow
when considering line broadening as a sensing mechanism.

7. Conclusions

In this article we have adopted an information theoretical framework within which the detec-
tion limits of a spherical microresonator based biosensor have been formally derived. A suitable
noise model was required in the derivations, such that, motivated by experimental and previous
theoretical findings, we considered two specific cases: technical (detector) and thermorefractive
noise. Firstly, technical noise in the form of additive Gaussian noise, as may arise from stray
light, was considered, whereby it was found that both the minimum resolvable frequency shift
and linewidth change scaled linearly with linewidth and with the square root of the sampling
interval. Contrasting results were, however, found when thermorefractive noise/laser jitter was
considered, whereby weak dependence on the resonance linewidth was found. Dependence on
the sampling interval remained however, and an inverse relationship with the sweeping win-
dow was also found, i.e. a larger laser sweep (for fixed sampling) allows greater measurement
accuracy.

To facilitate utility within a biosensing context, we further applied the derived detection lim-
its to the question of the minimum number of detectable bioparticles (and surface density of
a monolayer). Numerical calculations were also presented based on detection of InfA virons
and BSA monolayers. In the presence of detector noise a clear optimal microcavity size can be
identified arising from balancing the requirements of narrow linewidth, small mode volume and
large surface intensity. Attention was limited to first radial order WGMs, however, it is impor-
tant to mention that the optimal cavity size increases as the radial number increases. Coupling
to the correct mode is therefore important in realising potential gains offered by optimising
microcavity size. Sensor surface area was also found to play an important role for detection of
monolayers, such that optimal cavity sizes were found to be significantly larger than for sin-
gle particle detection. Interestingly, our results show that from an experimental point of view
it can be better to air on the side of caution when fabricating microspheres so as to produce
larger than desired spheres. This paradigm can be understood by observing that loss of detec-
tion sensitivity is more severe for smaller than optimal cavity sizes than the reverse case (see
e.g. Fig. 3). This point is further seen when considering the stability of detection limits to long
term temperature drifts. No optimal resonator size exists in the case of thermorefractive noise
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alone, however when both noise sources are present, the optimum size is reduced, dependent
on the relative magnitude of each noise source. In addition to optimising the microresonator ra-
dius, use of Fisher information underlined the role of coupling losses in setting detection limits,
hence allowing a further degree of freedom in system design. Specifically, and in opposition to
common opinion, a critically coupled cavity was found to be less sensitive than a moderately
under coupled one.

The analysis and discussion given, was found to hold true when either induced changes in res-
onance frequency or linewidth were monitored. Relative performance of the sensing modalities
however is dependent on the properties of the particles of interest. Non-absorbing particles im-
ply comparable performance between both modalities for smaller resonators, albeit broadening
based sensing surpasses the more common reactive shift based sensing for larger microcavities
and when absorption in the particle is strong. Careful assessment of the specific detection task
at hand is therefore necessary in system design.

A. Appendix A - Justification for neglecting temperature dependent line broadening

To study the dependence of the resonance frequency and linewidth of a WGM in a microsphere,
we must recall the resonance condition for Mie resonances i.e.[

nszhl(nsz)
]′

hl(nsz)
= N

[
ncz jl(ncz)

]′
jl(ncz)

, (33)

where N = 1 or (ns/nc)
2 for TE or TM modes respectively, jl(x) and hl(x) are the spherical

Bessel and Hankel functions of the first kind, z = ka, k is the (complex) vacuum wavenumber,
a is the resonator radius, prime denotes differentiation with respect to the argument of the
respective Hankel or Bessel function and ns (nc) is the refractive index of the surrounding
medium (resonator). From Eq. (33) it has previously been shown that the spectral position and
linewidth (neglecting absorption) of high Q WGMs can be expressed by asymptotic expressions
[53], which when written in our notation take the form

z0 ≈
l +1/2

nc
+ · · · (34)

Γ≈ 2c
a(n2

c−n2
s )

1
nsz2

0 y2
l (nsz0)

(35)

where yl(x) are the spherical Neumann functions. We note we make no restriction to resonators
in air as done in [53]. Considering then TE modes for definiteness we can show by differentiat-
ing Eqs. (34) and (35) and using standard properties of the spherical Neumann functions [34],
that the ratio

ρ =
dΓ/dT

dω0/dT
=

dΓ/dnc

dω0/dnc
=

2
Q

(
n2

s

n2
c−n2

s
−nsz0

lyl−1(nsz0)− (l +1)yl+1(nsz0)

(2l +1)yl(nsz0)

)
. (36)

Terms within the parentheses are of order z0 ∼ l ∼ 102, such that the 1/Q factor dominates.
Eq. (36) therefore demonstrates that the variation in the linewidth from temperature fluctuations
is many orders of magnitude smaller than the variation in the resonance frequency since WGMs
possess high Q factors. Whilst algebraically more involved, the derivation for TM modes similar
conclusions.
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B. Appendix B - Derivation of JΓ,Γ in the presence of thermorefractive noise

Our derivation starts by noting

JΓ,Γ =
NΩ

∑
j=1

∫
∞

0

[
1+

Λ2
j

σ2
t
−

Λ2
j∆ j

σ4
t

sech2
(

Λ j∆ j

σ2
t

)]
1

Γ2 pId, j dId, j. (37)

Evaluating the summation for the first term exactly and approximating the summation as an
integral in the second and third terms as before yields

JΓ,Γ ≈
NΩ

Γ2 +

√
2/π

Γ2∆Ωσt

{∫
∞

0
exp
(
− Λ2

2σ2
t

)∫
Ω/2

−Ω/2

[
Λ2

σ2
t

cosh
(

Λ∆

σ2
t

)]
exp
(
− ∆2

2σ2
t

)
d∆dΛ

−
∫

∞

0
exp
(
− Λ2

2σ2
t

)∫
Ω/2

−Ω/2

[
Λ2∆2

σ4
t

sech
(

Λ∆

σ2
t

)]
exp
(
− ∆2

2σ2
t

)
d∆dΛ

}
. (38)

The third term can be treated in an analogous manner to the integral in Eq. (13) by again making
the approximation sechx≈ exp[−x2/2] to yield

JΓ,Γ ≈
NΩ

Γ2 +

√
2/π

Γ2∆Ωσt

∫
∞

0
exp
(
− Λ2

2σ2
t

)∫ XΩ

−XΩ

coshx exp
(
−x2

2
σ2

t

Λ2

)
dxdΛ− 0.563σt

Γ2∆Ω
(39)

where the change of variables x=Λ∆/σ2
t has been made. Upon performing the integration over

x the second term becomes

1
Γ2∆Ωσ2

t

∫
∞

0
Λ

2
[

erf
(

Zσt +Λ√
2σt

)
+ erf

(
Zσt −Λ√

2σt

)]
dΛ (40)

where 2Z = Ω/σt and erf denotes the error function. Noting that the error function is an odd
function and that erf(2) = 0.995 ≈ 1 the kernel can be taken as zero for Λ > (Z + 2

√
2)σt .

Further neglecting exp(−4) terms after integration of the resulting finite definite integral (40)
yields

JΓ,Γ ≈
NΩ

Γ2 +
2σt

3Γ2∆Ω
Z(3+Z2)− 0.563σt

Γ2∆Ω
=

Ω

Γ3
6Z +Z3−0.845

3βZ
. (41)

Finally noting that Z� 0.845 for realistic scenarios Eq. (16) quickly follows.

C. Appendix C - Derivation of Eqs. (31) and (32)

Consider Eq. (21) which we write in the form N =C(R)F0/AQ where

C(R) =
(n2

c−n2
s )

Re[α]

R3

|Yll(π/2)|2
. (42)

Substituting in A = 4Q0Qc/(Q0 +Qc)
2 and Q−1 = Q−1

0 +Q−1
c +Q−1

m yields

N =
C(R)F0

Q0

(1+Qc/Q0)
2

4Qc/Q0

(
1+Qc/Q0

Qc/Q0
+

1
Qm

)
. (43)

Letting f1(R) =C(R)F0/Q0 and f2 = N/ f1, we can write

dN
dR

=
∂ f1

∂R
f2 + f1

∂ f2

∂Qm

∂Qm

∂R
+ f1

∂ f2

∂x
∂x
∂R

, (44)
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where x = Qc/Q0. We wish to find the conditions under which dN/dR = 0. Variation of the
coupling losses Qc by means of adjusting the coupling distance allows us to first zero the third
term of Eq. (44) by setting ∂ f2/∂x = 0. Noting the requirement that x > 0 it quickly follows
that ∂ f2/∂x = 0 when Eq. (31) holds. In the limit that 1/Qm → 0 the result of Section 4 (i.e.
Qc/Q0 = 2) is restored. Upon optimisation of the coupling distance we thus determine the
optimal microcavity radius by solution of

∂ f1

∂R

(
27
16

+
9

8Qm

)
− f1

∂Qm

∂R
9

8Q2
m
= 0, (45)

which follows by substitution of Eq. (31) into Eq. (44), expanding in terms of Q−1
m and equating

to zero. Further performing a Taylor expansion of f1(R) about the optimal radius size for Q−1
m =

0 (i.e. Ropt) and noting ∂ f1/∂R|R=Ropt
= 0 yields

∂ 2 f1

∂R2

∣∣∣∣
R=Ropt

δR
(

27
16

+
9

8Qm

)
− f1(Ropt)

∂Qm

∂R
= 0, (46)

where δR is the change in the optimal microcavity radius from introduction of Qm. Rearrange-
ment of Eq. (46) yields Eq. (32).
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