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Abstract. Directionality inherent in the polarization of light affords the means
of performing robust dynamic orientational measurements of molecules and
asymmetric scatterers. In this paper, the precision with which measurements
of this kind can be made is quantified for a number of common polarization-
based measurement architectures using a metric derived from Fisher information.
Specifically, a fundamental limit of 0.5 radian per detected photon (on average)
is found, thus highlighting the importance of maximizing photon numbers
by correct fluorophore selection. Informational dips, whereby measurement
precision is degraded, are shown to arise in many realistic measurement
scenarios, particularly for inference from null readings. The severity of these
precision losses is therefore considered, and it is shown to decrease with
increased system redundancy. Contamination of measured data from coherently
and incoherently radiating extraneous sources, furthermore, causes a loss of
precision. Analytic and numerical results are hence also presented in this vein.
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1. Introduction

The development of techniques such as (fluorescence) photoactivated localization microscopy
(PALM and FPALM) and stochastic optical reconstruction microscopy (STORM) [1, 2] has
revolutionized super-resolution microscopy in recent years. These methodologies have, in turn,
driven scientific advancement in, for example, the study of cell dynamics, atom-based quantum
information processing and super-resolution microscopy [3–5]. The measurement of the
orientation of single molecules arguably promises equally important gains, since this additional
degree of freedom contains further information about the molecule, its micro-environment
and history. Orientational measurements have, for instance, allowed conformational changes
and structure–function relationships of living cells and proteins to be examined by means of
tracking fixed-site fluorescent tags [3, 6, 7]. Furthermore, any angular dependence of physical
properties of single molecules, such as state transition probabilities or strong field ionization
potential, can provide fundamental insights into the photophysics of molecular sources [8, 9].
Practically, optical measurements of molecular orientation have been achieved using techniques
based on structured illumination, defocused image fitting and total internal reflection [10–12];
however, these can often suffer from poor signal-to-noise ratios and restrictive experimental
conditions. The inherent directionality of the polarization state of light, however, provides a
natural alternative by which to make robust orientational measurements [13, 14]. Accordingly,
a number of super-resolution microscopy techniques incorporating polarization have been
pursued and reported in the literature [15–17].

The need to fully characterize and benchmark competing localization and imaging systems
has motivated much research into relevant performance limits [5, 18, 19]. The quantification
of such limits is of importance in terms of both system design, particularly in scenarios with
limited photon budgets, and data analysis. Measurement limits in orientational studies are
similarly relevant; however, conventional performance metrics, such as signal-to-noise ratios
and resolution, are less appropriate in a polarization domain, since they refer to irradiance
measurements. We have, however, recently applied informatic and statistical principles to
describe the achievable measurement precision in polarization measurements [20]. An extension
of that work is presented in this paper, whereby precision limits on the estimation of the
orientation of single molecules are presented. While in many practical scenarios fluorophores
are able to rotate during an experimental measurement, attention is restricted to rigidly fixed
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molecules in this work. Rotational dynamics of a fluorophore give rise to a loss in obtainable
precision, as has been considered in [21], meaning that the precision limit derived in this paper
represents the best case scenario.

Single-molecule localization can achieve a localization accuracy of a few nanometres;
however, such methodologies fail to yield reliable results if multiple fluorescent molecules
that are present within the detection volume emit simultaneously. Typically, large errors can
arise in such instances since the fitting algorithms commonly used assume a priori that only
a single molecule is present; however, additional molecules constitute a further noise source,
hence affecting achievable precision [19]. Various approaches to overcome the former issue have
been proposed and demonstrated in localization microscopy, such as analysis of photobleaching
steps or photon statistics [22, 23]; however, the latter is more difficult to overcome. Orientational
measurements can similarly suffer from contamination of the measured signal with a resulting
loss of inference precision when multiple molecules are present. The severity of this degradation
is hence also investigated in this work.

Within this context, section 2.1 first recalls the results pertaining to the imaging of single
molecules, while section 2.2 presents the principles of polarization measurements suitable
for dynamic orientation studies. The mathematical framework by which the precision of
orientational measurements can be quantified is then briefly introduced in section 3.1. These
preliminary sections are included for completeness and as a vehicle to define the requisite
notation. Section 3.2 draws from earlier sections to establish limits on polarization-based
orientational measurements of single molecules; section 3.3 concludes by considering the
reduction in measurement precision arising from what is termed ‘dipolar crosstalk’.

2. Theory of polarization-based orientation measurements of a single molecule

2.1. Image of an electric dipole

Fluorescent molecules predominantly radiate due to electric dipole transitions of constituent
electrons. As such, an electric dipole emitter is used to model the radiation pattern of a single
molecule throughout this text. In microscopy contexts, however, the field radiated from a dipole
source must practically be imaged onto a detector. Such an imaging system serves not only to
collect emitted light, but also to magnify the object so as to form an image on a usable scale. The
modelling and analysis of orientation measurements hence first necessitate the determination of
the field distribution in the image plane of an imaging system due to the presence of a dipole in
object space. Limitation is made in this work to a simple 4 f transmission geometry, as shown
in figure 1, comprising two lenses of focal lengths f1 and f2, respectively, placed such that
they share a common focal plane. Asserting that the imaging system is telecentric, as holds for
the vast majority of microscopes, a vectorial ray tracing formulation can be used. See [24–26]
for further details of this theory; here it suffices to state that the electric field at a position
ρ2 = (ρ2, ϕ2, z2) relative to the geometric focus of the detector lens (assumed to be in air for
simplicity and with numerical aperture (NA) sin α2) arising from an on-axis, in focus, electric
dipole with moment p = (px , py, pz) is given by

E2(ρ2) =

px(K A
0 + K A

2 cos 2ϕ2) + py K A
2 sin 2ϕ2 + 2i pz K A

1 cos ϕ2

px K A
2 sin 2ϕ2 + py(K A

0 − K A
2 cos 2ϕ2) + 2i pz K A

1 sin ϕ2

−2i(px cos ϕ2 + py sin ϕ2)K B
1 − 2pz K B

0

 , (1)
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Figure 1. The 4 f telecentric imaging setup used for imaging a single
dipole emitter. Positions in the object and image plane are defined by the
position vectors ρ1 and ρ2, respectively, while positions on the reference
spheres associated with the collector and detector lens (assumed aplanatic and
with numerical apertures NA1 = sin α1 and NA2 = sin α2) are defined by the
coordinates (θ1, φ1) and (θ2, φ2). Ray directions in the respective spaces are
described by the normalized wavevectors s1 and s2.

where

K A
0 =

∫ α2

0

√
cos θ2

cos θ1
sin θ2(1 + cos θ1 cos θ2)J0(kρ2 sin θ2) exp[ikz2 cos θ2]dθ2,

K B
0 =

∫ α2

0

√
cos θ2

cos θ1
sin2 θ2 sin θ1 J0(kρ2 sin θ2) exp[ikz2 cos θ2]dθ2,

K A
1 =

∫ α2

0

√
cos θ2

cos θ1
sin θ2 sin θ1 cos θ2 J1(kρ2 sin θ2) exp[ikz2 cos θ2]dθ2,

K B
1 =

∫ α2

0

√
cos θ2

cos θ1
sin2 θ2 cos θ1 J1(kρ2 sin θ2) exp[ikz2 cos θ2]dθ2,

K A
2 =

∫ α2

0

√
cos θ2

cos θ1
sin θ2(1 − cos θ1 cos θ2)J2(kρ2 sin θ2) exp[ikz2 cos θ2]dθ2

(2)

and Jn(x) denotes the Bessel function of the first kind of order n. k = 2π/λ is the wavenumber
of the light radiated by the dipole, assumed to be monochromatic. Numerical evaluation of
these integrals requires the use of the aplanatic condition sin θ1 = ( f2/ f1)sin θ2, where the
ratio β = f2/ f1 defines the magnification of the imaging system. Assuming henceforth that the
dipole moment of the source lies in a plane perpendicular to the optical axis, as described by
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Figure 2. (a) An electric dipole of moment p has a transverse and longitudinal
orientation defined by angles γ and χ , respectively. (b) Variation of K A2

0 with
defocus distance z2, reflecting the reduction of angular precision with defocus,
when using a crossed polarizer polarimeter.

px = p0 cos γ , py = p0sin γ and pz = 0 (see figure 2, with χ = π/2), equation (1) reduces to

E2(ρ2) = p0


(K A

0 + K A
2 cos 2ϕ2) cos γ + K A

2 sin 2ϕ2 sin γ

K A
2 sin 2ϕ2 cos γ + (K A

0 − K A
2 cos 2ϕ2) sin γ

−2iK B
1 (cos ϕ2 cos γ + sin ϕ2 sin γ )

 . (3)

Equation (3) demonstrates the inherent relationship between the polarization state of the
field in the image plane and the orientation γ of the radiating dipole. Hence, polarization,
as claimed, provides a natural property of light from which molecular orientation can be
determined. The next section therefore focuses on how such polarization-based measurements
can be made and described.

2.2. Division-of-amplitude polarimetry

A number of different detection architectures exist that are capable of measuring the state of
polarization of light. For example, nulling techniques operate by passing light through variable
analysers which are adjusted in an attempt to fully extinguish the light [27]. Nulling techniques
are, however, less suitable for the study of dynamic systems, due to the long acquisition times
and low light efficiency involved. In contrast, division-of-amplitude polarimetry, in which
light is split and each resulting beam simultaneously analysed, allows rapid data acquisition
with high light efficiency. For example, the four Si detector polarimeter of Azzam [28] is
theoretically 100% light efficient, as too is the polarimeter of Lara and Paterson [29] described
below. The intensity Di on the i th detector can be found by forming the inner product of the
input Stokes vector S = (S0, S1, S2, S3)

T with a measurement vector Ti = (1, T1i , T2i , T3i)
T/2

(normalized such that T 2
1i + T 2

2i + T 2
3i = 1 to ensure a passive system), determined by the analyser

configuration. A horizontal polarizer, for example, has an associated measurement vector of
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Figure 3. Schematics of three alternative polarimeter designs (see text). The
notation is as follows: BS, beam splitter; WP, Wollaston prism; QWP, quarter
wave plate; GT, Glan Thompson polarizer; BBP, broadband prism; D, detector.

(1, 1, 0, 0)/2. Practically, input light is analysed using at least four distinct analysers, so as to
ensure that determination of the polarization state is well conditioned in a noise-free case [20].
The whole measurement process can hence be described using the matrix equation

D =
1

N
TS, (4)

where T is the so-called instrument matrix whose rows correspond to the measurement vector
of each analysing state. N is the number of analysing measurements made. It should be noted
that it has been assumed that each analyser is illuminated by equal fractions of the total
incident intensity, since it has been previously shown that this helps to produce optimal noise
characteristics in the inversion problem [20].

A number of polarimeter configurations will be considered in this paper for illustrative
purposes and are introduced here for convenience. The first configuration, proposed by Azzam
in 1982, is commonly found in the literature due to its conceptual simplicity [30]. In Azzam’s
design, incident light is projected onto horizontal, vertical, linear 45◦ and right circular polarized
states as can be achieved using the arrangement of polarizers and a quarter-wave plate shown in
figure 3(a). The corresponding instrument matrix is thus given by

T1 =
1

2


1 1 0 0

1 −1 0 0

1 0 1 0

1 0 0 1

 . (5)

Compain and Drevillon [31] proposed an alternative polarimeter architecture (figure 3(b))
in which total internal reflections within a prism are used to introduce the necessary retardance
to analyse elliptical states of polarization. Specifically, the geometry of the prism is chosen to
minimize the condition number of the instrument matrix (which quantifies noise amplification in
the solution of the inverse problem) to a value of 4.48. While the instrument matrix, in general,
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depends on the wavelength of the incident light, it is taken here as

T2 =
1

2


1 −0.575 0.818 0

1 −0.575 −0.818 0

1 0.617 −0.003 0.787

1 0.617 0.003 −0.787

 , (6)

where slight power imbalances, of the order of ∼5% in each detection arm, are neglected to
allow fairer comparison. Figure 3(c) shows a third polarimeter, recently proposed by Lara and
Paterson [29], employing six distinct measurement states and described by the instrument matrix

T3 =
1

2



1 1 0 0

1 −1 0 0

1 0 1 0

1 0 −1 0

1 0 0 1

1 0 0 −1


. (7)

This polarimeter was shown to possess polarization-independent noise characteristics, in the
presence of Gaussian thermal noise and signal-dependent Poisson noise.

Each of these polarimeters is capable of measuring the full state of polarization of input
light and, hence, it is possible to infer the orientation of the molecule. The estimation algorithm
adopted, however, will in general depend on where, and how many, positions are sampled in
image space. Full discussion of possible estimation algorithms is beyond the scope of this paper;
however, it is possible to determine fundamental limits on their precision, as shall be discussed
in the next section. A discussion of the light efficiency of each of these polarimeters can be
found in [20].

It is worthwhile to note that in many fields orientational studies of single molecules
are based on determining the fluorescence anisotropy or fluorescence polarization (see, e.g.,
[32, 33]). Such studies derive from measurements of crossed polarized components of the output
field and hence a rudimentary polarimeter is required. Accordingly, crossed polarizers will also
be considered throughout this paper. Unique determination of the full polarization state of light
is, however, not possible with crossed polarizers and, as a result, important information can be
lost. It is for this reason that full polarimetric studies on single molecules can be of interest
[13, 34–36].

3. Precision in orientational measurements

3.1. Fisher information

Noise present in a system introduces uncertainty about the true value of a quantity of interest,
whether it is the measured quantity itself, such as optical intensity, or a derived quantity, such
as molecular orientation. Accordingly, it is necessary to make an estimate, or ‘best guess’, as
to the true value of the quantity of interest. The well-known Cramér–Rao lower bound (CRLB)
[37, 38] quantifies the precision of any estimate, ŵ, of a parameter w, such that the variance of
the estimator, Kw, is bounded by Kw > J −1

w . Here Jw is known as the Fisher information [39],
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defined by

Jw = E

[(
∂ ln fX (x |w)

∂w

)T
∂ ln fX (x |w)

∂w

]
, (8)

where fX(x |w) is the probability density function describing the likelihood that the measured
random variable X takes the value x , as will in general depend on the value of w. E[ · ··] denotes
a statistical expectation over all possible values of x . A multivariate generalization, allowing
for multiple measurements X and estimated parameters w, can also be defined such that the
covariance matrix of the estimate of w is lower bounded by the inverse of a Fisher information
matrix (FIM)

Jw = E

[(
∂ ln fX (x|w)

∂w

)T
∂ ln fX (x|w)

∂w

]
, (9)

that is, Kw > J−1
w .

In a microscopy context, intensity measurements are made (i.e. X = D), the true value of
which is dependent on the domain from which light originates on the object, �ob, and the spatial
extent of the detector �im, as expressed by the integral

Di(�im, �ob) =

∫∫
�im

D(i)
im (ρ2, �ob)dρ2. (10)

Here D(i)
im (ρ, �ob) is the intensity at a point ρ2 in the detector/image plane due to light

originating from �ob. Assuming the detector to be corrupted by shot noise, the results of [20]
can be used, whereby the FIM associated with the estimation of the parameter vector w from a
set of N intensity measurements D = (D1, D2, . . . , DN ) is

Jw(�im, �ob) =
∂D
∂w

†

JD
∂D
∂w

, (11)

where

JD =
1

hν
diag

[
1

Di + Dib

]
, (12)

and a potential background intensity, Dib, has been included. As is the usual convention, hν

represents the energy of a single photon.
Acquisition of an image, however, means that measurements are made for different

domains. For example, an image can be built up in a confocal microscope by scanning the object
position, hence changing �ob between image points. Measurements from different positions can
be stacked into a vector format and equation (11) used; however, the assumption that the noise
at each measurement position is independent allows simplification such that the dimensions of
D are greatly reduced, hence facilitating numerical computations. Specifically, it can be shown
that Fisher information is additive for independent measurements [40], whereby the total FIM,
JT , can be found by summing that obtained from each measurement, i.e.

JT =

∑
k

Jw(�k
im, �k

ob), (13)

where �k
im and �k

ob denote the respective domains for each scan point.
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3.2. Estimating the transverse dipole orientation

Evaluation of the precision with which the orientation of single molecules can be found first
requires determination of the appropriate FIM. Restriction is made throughout this text to
determining the orientation of the emission dipole moment. Measurements of the absorption
moment are not considered, since if the molecule is not rigidly fixed the emission moment
and absorption moment need not correspond, which can lead to further precision losses (see,
e.g., [21]). Initially restricting attention to on-axis detection with a point polarimetric detector,
equation (1) reduces to E2(ρ2 = 0) = (K A

0 pX , K A
0 py, 0)T. Equivalently the on-axis, in-focus

Stokes vector is given by S(ρ2 = 0) = (K A
0

2
p2

0, K A
0

2
p2

0 cos 2γ, K A
0

2
p2

0 sin 2γ, 0)T. Inference of
the dipole orientation unfortunately requires the estimation of the intensity of the incident light,
S0 = K A2

0 p2
0; accordingly, the FIM for the estimation of the parameter vector w = (S0, γ )T must

be considered. From equations (4) and (11), it follows that

Jw =
1

N 2

∂S
∂w

T

TTJDT
∂S
∂w

, (14)

where

∂S
∂w

=


1 0

cos 2γ −2S0 sin 2γ

sin 2γ 2S0 cos 2γ

0 0

 . (15)

As described in [20], the intensity can be treated as a nuisance parameter and the reduced Fisher
information pertaining to the estimation of the dipole orientation can then be found. Bearing in
mind the form of E2(ρ2 = 0), perhaps the most intuitive approach to measurement of the dipole
orientation is to use a pair of polarizers with the corresponding instrument matrix2 given by

T=
1

2

(
1 cos 2ϑ1 sin 2ϑ1 0

1 cos 2ϑ2 sin 2ϑ2 0

)
, (16)

where ϑi define the azimuthal angles of the analysing states. This approach is also justifiable
since, by the model and assumptions described above, it is known a priori that the light incident
onto the detector is fully linearly polarized [41]. From equations (12) and (14)–(16), the Fisher
information Jγ can then be explicitly found, neglecting for the moment the background intensity
term, to be

Jγ =
2S0

hν

sin2(ϑ1 − ϑ2)

cos2(γ − ϑ1) + cos2(γ − ϑ2)
. (17)

Maximum Fisher information is thus achieved when ϑ1 = ϑ2 + π/2, i.e. when the polarizers are
crossed, whereupon equation (17) simplifies to Jγ = J max

γ = 2S0/hν for all dipole orientations.
Noting that S0 represents the total detected intensity, J max

γ is seen to vary linearly with
the number of photons. Upon invoking the CRLB a precision of 0.5 radian per photon is
therefore found to be achievable on average. The importance of photon budget in orientational
measurements can then be highlighted by contrasting GFP and Cy5 molecules, which are both
commonly used as fluorescent tags in techniques such as PALM and STORM. For example,

2 Two measurements are required such that the resulting set of linear equations are well conditioned (neglecting
ambiguity as to which quadrant the dipole lies in) when noise is absent.
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Figure 4. Polar plots, showing the calculated Fisher information Jγ (γ )/J max
γ ,

for the estimation of the transverse orientation γ of a single electric dipole, for
zero background intensity (a) and for S0/Db = 103 (b). Informational dips are
introduced in the presence of a background count. The longitudinal angle χ is
assumed to be π/2 and the dipole is assumed to be imaged using a simple 4 f
system with 100× magnification, in which the collector lens has an NA of 0.95
and measured by on-axis polarimeters configured as in section 2.2.

typically 3000 photons can be collected from a single GFP molecule before irreversible
photobleaching, yielding an orientational precision of 34.4 arcseconds, while Cy5 photobleachs
after approximately 10 000 excitations [19], such that a precision of 10.3 arcseconds can be
achieved in the best case. Resistance of fluorophores to photobleaching is, hence, beneficial
in terms of achievable accuracy; however, such considerations must naturally be balanced
with other experimental factors, such as toxicity and emission wavelengths. An exhaustive
comparison of fluorescent dyes is beyond the scope of this paper; however, considerable
relevant published data are available (e.g. http://www.invitrogen.com). To further maximize the
measurement precision design of efficient optical paths, the use of high-quality detectors is also
crucial.

It is also informative to consider the Fisher information Jγ when S0 is assumed to be known
a priori. In particular for two arbitrarily oriented polarizers, the resulting expression is

Jγ = J max
γ

[
sin2(γ − ϑ1) + sin2(γ − ϑ2)

]
, (18)

which again reduces to Jγ = J max
γ for all dipole orientations, when the polarizers are crossed3.

This behaviour has been shown in figure 4(a) in conjunction with the results obtained when

3 While the notation J max
γ will be retained, it should be observed that when S0 is known a priori, the maximum

Fisher information is 2J max
γ .
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the polarimeters introduced in section 2.2 are used to measure the state of polarization on axis,
in focus. The improved and γ -independent performance of the crossed polarizer arrangement
is evident. This behaviour arises since the polarimeters of section 2.2 are designed for the
measurement of the ellipticity, in addition to the azimuthal angle of a state of polarization.
Furthermore, the polarimeters of section 2.2 possess more detection arms (see [42]), albeit they
can fully determine which quadrant γ lies in.

A defocus in the imaging system, or equivalently an axial shift in the position of the
dipole, can also be characterized since the axial coordinate appears only in the K integrals4.
The variation of K A2

0 , and hence Jγ , as a function of defocus distance z2 is shown in figure 2(b).
Oscillatory behaviour is exhibited; however, the best performance is seen within the depth of
focus of the imaging system, as would be expected.

Presence of a background intensity during the measurement process, however, produces
some interesting behaviour and breaks the orientation independence of the Fisher information,
as shall now be considered. Maintaining the assumption that S0 is known a priori for simplicity,
when a background intensity Db is incorporated (assumed the same on each detector),
equation (18) becomes

Jγ = J max
γ

[
S0 sin2(γ − ϑ1) cos2(γ − ϑ1)

S0 cos2(γ − ϑ1) + Db
+

S0 sin2(γ − ϑ2) cos2(γ − ϑ2)

S0 cos2(γ − ϑ2) + Db

]
. (19)

Assuming the polarizers are crossed at angles of 0◦ and 90◦, respectively, gives

Jγ = J max
γ S0 sin2 γ cos2 γ

[
1

S0 cos2 γ + Db
+

1

S0 sin2 γ + Db

]
. (20)

While in the absence of a background count a constant Fisher information was seen, if the
limits γ → 0◦ and γ → 90◦ are taken, equation (20) yields zero Fisher information, as shown in
figure 4(b) (assuming the ratio S0/Db = 103). Dipole orientations that differ from these critical
orientations, however, still approximately exhibit the γ invariant behaviour of Jγ . Furthermore,
it is found that as the ratio S0/Db decreases the width of the information dip around the critical
angles increases to such an extent that for large Db, Jγ ∝ sin2γ . For reference, it is noted that
this is of the same functional form as when Gaussian noise is assumed.

An explanation of this behaviour can be found by first considering inference of the
orientation of a dipole using only a single polarizer. The Fisher information in this case is given
by a single term of equation (20). Inference from a single polarizer centres around Malus’ law
with zero intensity corresponding to a dipole orientation perpendicular to the polarizer, while
parallel orientations give maximum intensity. The scaling of the variance of Poisson noise with
the mean, however, automatically implies that zero intensity suffers no noise, such that it can be
identified exactly, while the converse holds for maximum intensity. Furthermore, Malus’s law
means that small changes in the orientation of a dipole aligned close to these critical orientations
give rise to very small changes in the measured intensity (mathematically ∂ D/∂γ = 0
when the dipole and polarizer are co- or perpendicularly oriented). Due to low noise levels
for a perpendicularly oriented dipole, small changes in its orientation can be distinguished.

4 The K integrals of equations (2) accommodate a defocus of the detector in the image plane. If, however, the
dipole suffers an axial shift, zdp, the exponential term exp[ikz2 cos θ2] must be modified to exp[ik(z2 cos θ2 −

zdp cos θ1)] (see [43]).
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If, however, a dipole is originally parallel to the polarizer, the small intensity changes associated
with small rotations are lost in the noise.

Fisher information, being a local measure of information, quantifies the sensitivity of the
recorded intensities on the dipole orientation and hence a single polarizer oriented at 0◦ yields
zero Fisher information with regard to a dipole oriented at γ = 0◦, but provides maximum
information for γ = 90◦. Thus, if two crossed polarizers are used, a reduction in Fisher
information from a measurement in one is counterbalanced by a gain in the other, producing
an orientation-independent Jγ .

The argument above, however, holds only when there is no additional noise present in
the system. Additional noise, arising from, for example, a background count, has the adverse
effect of masking small changes in intensity arising from small angular deflections of a
perpendicularly oriented dipole, in a similar manner to how small changes of a co-oriented
dipole are lost in the inherent Poisson noise.

Larger dipole deflections give rise to larger intensity changes in the detector, and thus when
measuring dipole orientations that differ significantly from the critical angles, the background
count becomes less relevant and the background free behaviour is restored. The extent of angular
deviations considered to be significantly far from the critical orientations is naturally set by the
strength of the background noise, hence explaining the widening of the information dip as S0/Db

decreases.
Informational dips such as that discussed for a pair of crossed polarizers can also be seen

for alternative polarimeter architectures, as shown in figure 4(b). Importantly, it should be noted
that no dipole orientations give rise to complete loss of Fisher information, since each of these
polarimeter configurations possesses additional arms. These additional arms are chosen such
that the set of measurement states is not orthogonal such that a redundancy is introduced into
the measurements. In turn, this implies that each detector suffers information dips at different
dipole orientations. Consequently, the total information obtained is non-zero. For example, the
polarimeter of Lara and Paterson (red dashed line) [29] possesses polarizers at ±45◦, in addition
to polarizers at 0◦ and 90◦. In a similar fashion to the crossed polarizers described above, the
polarizers at ±45◦ suffer an information dip for dipoles orientated at ±45◦, but not for dipoles
oriented at 0◦ or 90◦. When considering the polarimeter as a whole, however, the effect of these
dips is mitigated by the presence of the detection paths with crossed polarizers oriented at 0◦

and 90◦, which yield non-zero information.

3.3. Dipolar crosstalk

In the preceding section, the image of an on-axis dipole was calculated and used to quantify the
accuracy achievable in inferring the dipole’s orientation. Introduction of a second, extraneous,
off-axis dipole in the object plane, however, modifies the image plane distribution and can thus
have consequences for any estimate of the first dipole’s orientation, as shall now be analysed.

Consider first the image of an off-axis dipole. Displacement of a dipole to an off-axis
position ρdp = (ρdp, ϕdp, 0)T can be modelled by assuming shift invariance of the imaging
system. Shift invariant imaging can be justified following the discussion in [26, 43], where the
displacement is shown to introduce an additional phase term into the Debye–Wolf diffraction
integral. The image of an off-axis dipole can, hence, be calculated using equation (1), whereby
Eoff-axis

2 (ρ2) = Eon-axis
2 (ρ2 − βρdp). The image field of the j th dipole (in this example only two

dipoles will be considered such that j = 1 or 2), with moment p j = p0 (cos γ j , sin γ j , 0)T, can
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then be expressed in the form

Edp j = p0

 a1 j+ cos γ j + a2 j sin γ j

a2 j cos γ j + a1 j− sin γ j

a3 j i cos γ j + a4 j i sin γ j

 , (21)

where

a1 j± = K A
0 j ± K A

2 j cos 28 j , (22a)

a2 j = K A
2 j sin 28 j , (22b)

a3 j = −2K B
1 j cos 8 j , (22c)

a4 j = −2K B
1 j sin 8 j . (22d)

The index on the K integrals denotes the dependence on the radial coordinate |ρ2 − βρdp j
| of

the j th dipole, while 8 j = arctan[(y2 − βydp j )/(x2 − βxdp j )].
The total intensity in the detector plane will, however, vary depending on the coherence

properties of the light originating from the two dipoles. Two limiting cases will be considered
here in which the light from the dipoles is either fully incoherent or fully coherent. The former
situation may arise, for example, if imaging single fluorescent molecules, e.g. in fluorescence
microscopy [44], where the inherently random nature of the excitation and re-emission process
results in incoherent radiation, such that intensities, or equivalently Stokes parameters, add in
the image plane. Alternatively, if imaging two dipoles induced by a coherent field, as may arise
in the scattering of light from gold beads, or other small scatterers [45, 46], the dipoles radiate
coherently, meaning that field vectors sum in the image plane.

Detection is assumed to be performed by a scanning point polarimeter comprising two
polarizers oriented at ϑ1 = 0◦ and ϑ2 = 90◦, i.e. horizontally and vertically crossed polarizers
as described in the preceding section. Strictly, the presence of a non-zero longitudinal field
component for off-axis dipoles necessitates a full 3D treatment, whereby generalized Stokes
vectors become 9 × 1 vectors [47]. The instrument matrix for the crossed polarizers scenario
can then be shown to be given by

T=

(2
3

1
2 0 0 0 0 0 0 −

1
2
√

3
2
3 −

1
2 0 0 0 0 0 0 −

1
2
√

3

)
. (23)

Accordingly, the detected intensity vector (as still found using D = TS/N ) is given by (once
more neglecting background readings)

Dinc
=

1

2

(
|Edp1

x |
2 + |Edp2

x |
2 + |Edp1

z |
2 + |Edp2

z |
2

|Edp1
y |

2 + |Edp2
y |

2 + |Edp1
z |

2 + |Edp2
z |

2

)
(24)

for the incoherent dipole case or alternatively by

Dcoh
=

1

2

(
|Edp1

x + Edp2
x |

2 + |Edp1
z + Edp2

z |
2

|Edp1
y + Edp2

y |
2 + |Edp1

z + Edp2
z |

2

)
(25)

for coherently radiating dipoles.

New Journal of Physics 13 (2011) 093013 (http://www.njp.org/)

http://www.njp.org/


14

To evaluate the extent of crosstalk between the dipoles when attempting to infer the
orientation of one dipole in the presence of Poisson noise, the FIM is again calculated. The
magnitude of the dipole moment p0 is assumed to be known a priori for simplicity and hence
so too is S0, such that

J ν
γ1

(γ1, γ2) =
1

Dν
1

(
∂ Dν

1

∂γ1

)2

+
1

Dν
2

(
∂ Dν

2

∂γ1

)2

(26)

for ν = coh or inc, denoting the coherent and incoherent cases, respectively. Calculating J ν
γ 1

requires the derivatives

∂ Dinc
1

∂γ j
= p0[(a2 j cos γ j − a1 j+ sin γ j)(a1 j+ cos γ j + a2 j sin γ j)

+(a4 j cos γ j − a3 j sin γ j)(a3 j cos γ j + a4 j sin γ j)], (27)

∂ Dinc
2

∂γ j
= p0[(a2 j cos γ j + a1 j− sin γ j)(a1 j− cos γ j − a2 j sin γ j)

+(a4 j cos γ j − a3 j sin γ j)(a3 j cos γ j + a4 j sin γ j)], (28)

∂ Dcoh
1

∂γ j
= p0[(a2 j cos γ j − a1 j+ sin γ j)(a11+ cos γ1+ a12+ cos γ2 + a21 sin γ1+ a22 sin γ2)

+(a4 j cos γ j − a3 j sin γ j)(a31 cos γ1 + a32 cos γ2 + a41 sin γ1 + a42 sin γ2)], (29)

∂ Dcoh
2

∂γ j
= p0[(a1 j− cos γ j − a2 j sin γ j)(a21 cos γ1+ a22 cos γ2 + a11− sin γ1+ a12− sin γ2)

+(a4 j cos γ j − a3 j sin γ j)(a31 cos γ1 + a32 cos γ2 + a41 sin γ1 + a42 sin γ2)]. (30)

Examining the incoherent dipole case first, it is noted that the derivative terms, ∂ Dinc
i /∂γ1,

are independent of γ2 and ρdp2
, while the additive terms, |Edp2

µ |
2, (µ = x, y, z) in equation (24)

are independent of γ1 and ρdp1
. As such, the second dipole acts as a background source. For all

positions and orientations of the second dipole with a non-zero intensity at the detection point,
information dips akin to those discussed in the single-dipole example above are introduced into
the performance characteristics of any estimator for γ1 = 0◦ or 90◦.

With respect to coherent dipoles, consider briefly the limiting case in which the second
dipole is moved to infinity, i.e. ρ2 → ∞. The functional dependence of the K integrals of
equations (2) implies that {a12±, a22, a32, a42} → 0 as ρ2 → ∞. Under these circumstances,

∂ Dcoh
1

∂γ1
→ p0[(a21 cos γ j − a11+ sin γ1) (a11+ cos γ1 + a21 sin γ1)

+(a41 cos γ1 − a31 sin γ1)(a31 cos γ1 + a41 sin γ1)] =
∂ Dinc

1

∂γ1
,

∂ Dcoh
2

∂γ1
→ p0[(a11− cos γ1 − a21 sin γ1)(a21 cos γ1 + a11− sin γ1)

+(a41 cos γ1 − a31 sin γ1)(a31 cos γ1 + a41 sin γ1)] =
∂ Dinc

2

∂γ1
,
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whereupon it is seen that the coherent and incoherent cases exhibit the same behaviour for large
dipole separations.

Limiting forms of J ν
γ 1

can also be derived when the second dipole is at a finite distance
from the first, which shall now be assumed to again be located on-axis. Of significance is the
form of equation (26) when p1 and p2 are parallel or perpendicular, since these configurations
represent the two extreme configurations. Furthermore, the cases when p1 lies parallel or at 45◦

to the transmission axis of one of the analysing polarizers will be considered. Expressions for
J ν
γ 1

(γ1, γ2) are hence now given when γ1 = 0 for γ2 = 0 and π/2 and also for γ1 = π/4 and
γ2 = ±π/4. For the incoherent case

J inc
γ1

(0, 0) = J inc
γ1

(
0, π

2

)
= 0, (31a)

J inc
γ1

(
π

4 ,±π

4

)
=

J max
γ

2

[
a2

11+

a2
11+ + (a12+ ± a22)2 + (a32 ± a42)2

+
a2

11−

a2
11−

+ (a22 ± a12−)2 + (a32 ± a42)2

]
, (31b)

where the expected information loss at γ1 = 0◦ and 90◦ is clearly evident. Coherent
superposition of the radiated dipole fields yields

J coh
γ1

(0, 0) = J max
γ

a2
22

a2
22 + a2

32

, (32a)

J coh
γ1

(
0, π

2

)
= J max

γ

a2
12−

a2
12−

+ a2
42

, (32b)

J coh
γ1

(
π

4 ,±π

4

)
=

J max
γ

2

[
(a11+ + a12+ ± a22)

2

(a11+ + a12+ ± a22)2 + (a32 ± a42)2

+
(a22 + a11− ± a12−)2

(a22 + a11− ± a12−)2 + (a32 ± a42)2

]
. (32c)

Inspection of the denominators in equations (32) reveals that the longitudinal field component
arising in the image plane from the extraneous dipole acts as a background source, a result
that also holds for more general configurations (if the dipole of interest is located on axis).
Informational losses, therefore, can once more result. Since the second lens is, however,
practically of low NA, this background term is small and the dips correspondingly narrow.

Dropping the longitudinal background term thus allows the interference effects for coherent
dipoles to be considered more closely. By the evaluation of equation (26) it can be shown that

J coh
γ1

(γ1, γ2) =
2p2

0 K A
01

2

hν
= J max

γ , (33)

for all dipole configurations. The presence of a second dipole is thus seen to not affect J coh
γ 1

.
That said, a bias, in general dependent on γ1, γ2 and ρdp2

, is introduced into an estimator, with
a resulting increase in the variance and the mean squared error [48]. As the interfering dipole
is gradually moved to larger distances the magnitude of this bias decreases, so as to restore the
single-dipole results of section 3.2.
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Figure 5. (a) The calculated normalized Bayesian Fisher information J coh
γ 1

for
estimating the orientation of an on-axis dipole in the presence of a second
extraneous dipole located at ρdp2

= (xdp2
, 0, 0) as a function of γ1. (b) Line

plots of normalized Fisher information for γ1 = 0◦ and 90◦ as a function dipole
separation. For reference, plots of K02 ± K22 are also shown. (c) The same
as (a), but a further background intensity count Db is introduced into the
detection process, where S0/Db = 102. (d) The same as (c), albeit including
detector scanning in the image plane over a square field of view with a spatial
extent of 6 × 0.61λ/NA2. The normalization factor used in (d) is given by∫

�im
J max
γ (ρ2)dρ2 =

2p2
0

hν

∫
�im

K A
01

2
(ρ2)dρ2.

Removal of the estimator bias could be approached by a reformulation of the problem as
that of the joint estimation of (γ1, γ2), in which the orientation of the second dipole is treated
as a nuisance parameter. To illustrate the general performance that can be expected, a Bayesian
viewpoint is adopted in which the orientation of the second dipole is assumed to obey a uniform
probability density function, i.e. f02(γ2) = 1/2π , and the Fisher information for inference of

New Journal of Physics 13 (2011) 093013 (http://www.njp.org/)

http://www.njp.org/


17

γ1 is calculated as a function of dipole separation and γ1. The second dipole is assumed to lie
on the positive x-axis in object space and the same imaging parameters as those assumed in
section 3.2 are used.

When considering the coherent, zero background results (Db = 0) shown in figure 5(a), it is
also useful to consider figure 5(b), which shows the variation of J coh

γ 1
(γ1) with dipole separation,

ρdp2 = xdp2 , for γ1 = 0◦ and 90◦ (solid lines). Plots of K A
02(ρ2) ± K A

22(ρ2) (normalized such that
K A

02(0) = 1) are also shown (dashed lines). These latter plots correspond to the variation of
Edp2

x (ρ2) and Edp2
y (ρ2), respectively. Peaks in J coh

γ 1
(0) are seen to correspond to zeros in Edp2

x (ρ2),
while maxima in Jγ 1(π/2) correspond to zeros in Edp2

y (ρ2). Such a situation can be understood
by first noting that an x-oriented dipole yields zero intensity in D2 when the second dipole is
absent. The presence of a second dipole hence introduces noise into D2 when Edp2

y (ρ2) 6= 0,
thus destroying the ability of an observer to identify the zero signal from the first dipole,
in an analogous manner to the formation of informational dips. The scenario is similar for a
y-oriented dipole, albeit the role of the detectors is reversed. A peak in J coh

γ 1
(0) also corresponds

to a minimum in J coh
γ 1

(π/2) (and vice versa), by similar arguments.
When an independent background count Db is introduced, zero Fisher information is seen

for x- and y-oriented dipoles regardless of the position or angle of the second dipole as shown
in figure 5(c), where the ratio S0/Db = 102 was assumed. Oscillations in the Fisher information
as the dipole separation is increased, originally seen for the non-zero background case, are still
exhibited, although the modulation of the oscillations is reduced. The extent of modulation
is reduced since the information dips are broadened by the background count, hence washing
out sharp variations. As Db is further increased, this modulation reduces to a more uniform
behaviour.

Scanning the polarimetric detector in the image plane and hence estimating molecule
orientation from an extended image, however, also act to suppress informational oscillations,
as shown in figure 5(d). While the informational dips at γ1 = 0◦ and 90◦ are still present, the
polarization variation of the image field helps to overcome informational losses introduced from
inference from zero intensities in one or more detectors.

4. Conclusions

Principally, this study aimed to evaluate the precision limits when estimating the orientation of
single molecules, as inferred from polarimetric measurements. To do so, the performance of
a simple polarization microscope imaging a single molecule, modelled as an electric dipole
emitter, was considered. Furthermore, a number of polarization measurement architectures
were evaluated when attempting to estimate the molecule’s transverse orientation based on a
metric derived from Fisher information. While it was found that when attempting to determine
the orientation of a single dipole a background free, crossed polarizer configuration (as is
common in fluorescence anisotropy studies) performs well, informational losses at particular
(although highly predictable) orientations were seen to occur when additional noise sources
are introduced. Information losses of this nature were also seen in more complex architectures
found in the literature. Greater redundancy can be introduced into these configurations by the
use of a set of non-orthogonal measurement states, which can in turn reduce the significance
of information dips. Fundamentally, it was found that, on average, a precision of 0.5 radian is
achievable per photon. Due to the photon numbers achievable from different fluorescent dyes,
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the importance of correct dye selection in obtaining a desired precision is evident, as too are
efficient optical design and high-quality detectors. It is important to note that the analysis given
in this paper is based on a fully rigorous electromagnetic imaging model. As such, precision
losses that may arise from corrections made for polarization effects (see, e.g., [49–51]) are
automatically factored into the quoted precision of 0.5 radian per photon. Furthermore, this
precision does not include further gains that may be achievied by the use of squeezed optical
states or by exploiting the anti-bunched statistics of single-molecule emission. For comparison,
an angular precision of 0.2◦, 2◦ and 2◦ was quoted by Ha et al [14], Prummer et al [33] and Aguet
et al [17], who, respectively, used polarization modulation, optical polarization tomography and
defocused image acquisition to infer molecular orientation. Prummer et al [33] quote a shot-
limited value, while that of Aguet et al [17] is found using the CRLB and hence both are directly
comparable to the results given in this work. Given an average precision of 0.5 radian per photon,
a comparable precision could be achieved using complete polarization measurements with only
∼14 photons, which is easily achievable even in high-loss systems.

Multiple molecules present in a detection volume are well known to give rise to large
errors in localization techniques. Precision losses in the domain of orientational measurements
were thus also investigated by considering the introduction of a second extraneous dipole. If
incoherently radiating with respect to the first, this second molecule acts as a background source,
thus having a detrimental effect on the measurement process, such as inducing information
dips as found in the single molecule case. Although similar effects can be seen for a second
coherently radiating dipole, the extent of performance degradation becomes dependent on the
relative configuration of the two dipoles producing a more complex behaviour. In essence,
however, all informational losses are seen to occur when inference is based on null readings, due
to their susceptibility to any additional perturbations. If estimation of the molecular orientation
is based on an image formed (e.g., by the use of a scanning microscope), a reduction in the
complexity of the dipole crosstalk attributes is seen, partly due to the averaging introduced in
such measurements, but also due to the larger number of measurements taken.
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