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Introduction

Whispering
gallery mode
(WGM) biosensors
commonly
operate in a swept
modality, whereby
the transmission
spectrum exhibits a
Lorentzian lineshape
as the laser source
is tuned across the
WGM resonance.
Binding of small
bioparticles to such a sensor induces a shift in the resonance frequency,
δω, in addition to line broadening, δΓ. Detection of such events, requires
precise knowledge of ω0 and Γ for each frequency scan, which is ultimately
limited by noise present in the measurement. Common noise sources
include detector noise and laser jitter/thermorefractive noise. Knowledge
of such noise imposed detection limits in turn allows for system
benchmarking and improved experimental design.

Fisher information and measurement precision

Estimates of the resonance frequency and linewidth, derived from
experimental measurements, will randomly vary as can be quantified using
the estimator variance σ2

ω0
and σ2

Γ. The Cramér-Rao lower bound provides
a rigorous statistical tool to quantify the best possible measurement
precision achievable within any given noise regime and implies
σ2
ω0
≥ 1/Jω0

(and similarly for Γ), where Jω0
is the Fisher information

which derives from the probability density function of the noise [1]. For
detector and thermorefractive noise we find the minimum detectable
change in ω0 and Γ which are given by:
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respectively. Coloured noise may also be considered when the noise power
spectrum is known by employing the asymptotic Fisher information [2].
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WGM detection limits

Detection limits in WGM sensing derive from a balance between the size
of the induced resonance shift or line broadening versus the minimum
detectable signal. Taking resonance shifts as an example, the minimum
number of detectable (bio)-particles can then be defined as N = ∆ω/|δω|,
where δω can be found using perturbation theory [3]. Ultimately we find,
for detector noise and laser jitter that
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where R is the resonator radius, nc,s is the refractive index of the cavity
and its surroundings, I0/σd is the measurement SNR, Ylm are the
spherical harmonics and Q0,c are the intrinsic and coupling quality factors.

Optimal WGM biosensors
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Equation (1) can be optimised in a number of ways. Firstly, the resonator
radius can be adjusted to improve detection sensitivity, due to its effect on
cavity losses. An optimum exists for detector based noise since radiation
losses exhibit a differing size dependence to absorption losses.
Thermorefractive noise/laser jitter, is however found to be independent of
coupling and cavity losses, such that N ∼ R3. Realistically, any
experimental setup will be subject to both technical and fundamental
noise sources. Accordingly the experimental detection limit and optimal
microcavity size is set by competing requirements of both noise sources.
Stam’s inequality allows detection limits to be found in this case.
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Fig. 4. (a) Variation of (1+Qc/Q0)
3/(Qc/Q0)

2 factor, describing coupling loss depen-
dence of minimum number of detectable particles, with Qc/Q0. A clear minimum is ex-
hibited at Qc = 2Q0. (b) Variation of (1+Qc/Q0)

3/(Qc/Q0)
2 with transmission depth A

in the over- and under-coupled regime. Dashed black line corresponds to A = 0.89, i.e.
Qc = 2Q0

Evidently, these figures are below the single InfA viron limit given the noise levels chosen.
Whilst Fig. 4 shows an optimal microcavity radius of 46.8 µm, it is important to mention

that this value is strongly dependent on the operating wavelength, principally due to wave-
length dependent absorption and dispersion of water. To highlight this point, Table 1 shows
the calculated globally optimal microcavity size and coupling distance for a set of common
wavelengths ranging from the blue to the infrared end of the optical spectrum. Decreased water
absorption in the blue region of the spectrum gives significantly better detection limits than in
the red region as would be expected. For example, over two orders of magnitude reduction in N
between operating wavelengths of 780 nm and 410 nm can be seen such that when operating at
410 nm detection of a single bovine serum albumin (BSA) is possible. For wavelengths smaller
than 410 nm detection limits fall due to increased water absorption. Furthermore, our calcula-
tions show that smaller microcavities allow more sensitive measurements in the blue region of
the spectrum.

Table 1. Calculated optimal parameters for differing wavelengths. Optimal parameters for
detection of BSA monolayer for λ = 1550 nm and 1300 nm were beyond computational
bounds.

InfA viron BSA monolayer
λ Q0 Ropt dopt log10 Nopt Q0 Ropt dopt log10 σs,opt

(nm) (µm) (µm) (µm) (µm) (m−2)
1550 1.30×105 60.64 0.972 1.23 – > 4000 – –
1300 1.79×105 53.07 0.866 0.92 – > 4000 – –
780 1.51×108 46.80 1.169 -2.23 7.71×108 202.5 1.109 10.20
633 1.52×109 41.18 1.127 -3.41 2.00×109 50.9 1.123 9.20
410 7.95×109 26.63 0.799 -4.65 8.69×109 28.2 0.799 8.32

Furthermore, since cavity
loss mechanisms play a
critical role in determining
optimal resonator
geometries a strong
wavelength dependence is
seen. Dispersion of water
and water absorption
dominate the behaviour, such that clear improvements are seen when blue
light is used. The transmission window of water implies blue light gives
globally optimal detection limits.

Finally, the (1 + Qc/Q0)
3/(4Q2

c/Q
2
0) factor can be maximised by varying

the coupling losses Qc such that Qc/Q0 = 2. This can be done in a prism
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coupled system, for instance,
by adjusting the coupling
distance d. In contradiction
to common wisdom optimal
detection is thus seen to be
achieved when the
microresonator is slightly
under coupled rather than
critically coupled and
holds since optimal detection
simultaneously requires both a
large transmission depth,
A, and a narrow linewidth.
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