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Single Pixel Polarimetric Imaging
through Scattering Media:
Supplemental Document

This document provides supplementary information for “Single Pixel Polarimetric Imaging
through Scattering Media”. Some theoretical background and experimental data for the full
Mueller matrix images obtained with and without a scattering medium present using single pixel
polarimetry imaging are presented.

1. CONSTRAINED LEAST SQUARES ALGORITHM

Estimating the true Mueller matrix M of a sample, by direct inversion of the instrument matrices
(A and W) defined in the main text, i.e. by using the equation

M̂ = A−1DW−1, (S1)

where D is a matrix of intensities measured by a polarisation state analyser, is not guaranteed
to provide a physically acceptable estimate M̂. In this work, we instead use a constrained least
squares algorithm to ensure physicality of Mueller matrices computed from experimental data,
similar to the maximum likelihood-based algorithm proposed by Aiello et al. [1]. Specifically,
the constrained least squares algorithm seeks to find the Mueller matrix, M̂, that minimises the
function

F (M̂) = ‖D−AM̂W‖2, (S2)

i.e. M̂ minimises the difference between the theoretical and experimental intensities and is the
estimate of the true Mueller matrix, M. To enforce physicality of the Mueller matrix we make use
of the related H matrix [2], which can be obtained from M̂ as

H =
1
4

3

∑
k,l=0

mkl(σk ⊗ σ∗l ), (S3)

where mkl denotes the (k, l) th element of M̂, and σk are the 2× 2 Pauli matrices. It can be shown
that the elements of H can be expressed in terms of the ensemble averaged products of elements
Tij of an associated Jones matrix, i.e. elements of H are of the form 〈TijTkl〉 (i, j, k, l ∈ (0, 1)).
More specifically, H is the complex correlation matrix of the underlying Jones matrix elements
[1]. Consequently, for a Mueller matrix to be physically acceptable, its associated H matrix must
be positive semi-definite [2]. Any positive semi-definite matrix can be represented using the
Cholesky decomposition whereby H = LL† where L is a lower triangular matrix containing 16
real parameters of the form [1]

L =


l1 0 0 0

l5 + il6 l2 0 0

l11 + il12 l7 + il8 l3 0

l15 + il16 l13 + il14 l9 + il10 l4

 . (S4)

Using Eq. (S2), Eq. (S3) and Eq. (S4), an optimal set of parameters {l1, l2, . . . , l16} that minimises
F can be found through a minimisation algorithm such as the fminsearch function found in
MATLAB. The corresponding optimised H matrix, Hopt, can then be reconstructed using H = LL†,
and the final estimated Mueller matrix, now guaranteed to be physical, can be computed element-
wise using

m̂kl = tr[Hopt[σk ⊗ σ∗l ]]. (S5)



2. VALIDITY OF NEGLECTING Bml

To justify the assumption that Bml � Am used in the main text we here present results from
Monte Carlo simulations. For computational reasons we limit our computations to a 2D geometry,
however, similar results are expected for 3D simulations.

The matrix Bml was defined in the main text as Bml = ∑n(TSM
nm ⊗ TSM,∗

nl ). Explicitly, this can be
written as

Bml = ∑
n


Tnm,00T∗nl,00 Tnm,00T∗nl,01 Tnm,01T∗nl,00 Tnm,01T∗nl,01

Tnm,00T∗nl,10 Tnm,00T∗nl,11 Tnm,01T∗nl,10 Tnm,01T∗nl,11

Tnm,10T∗nl,00 Tnm,10T∗nl,01 Tnm,11T∗nl,00 Tnm,11T∗nl,01

Tnm,10T∗nl,10 Tnm,10T∗nl,11 Tnm,11T∗nl,10 Tnm,11T∗nl,11

 , (S6)

where Tnm,pq is the (p, q)th element in TSM
nm , and the superscript, ‘SM’, has been omitted for clarity.

The matrix Am has the same form as Bml , except that l is replaced by m (i.e. Am = Bmm). As such,
the Jones matrix TSM

nm is required to compute Am and Bml .
To calculate TSM

nm numerical simulations were used (see Ref. [3] for full details). Simulations
considered light (wavelength λ0 = 638 nm) incident on a scattering medium (of transverse width
W = 1 mm) composed of non-overlapping uniformly randomly distributed cylinders (refractive
index of 1.6 and radius 220 nm) in air (refractive index of 1). Note, these parameters were chosen
such that the simulated scattering medium had a mean free path and scattering anisotropy factor
comparable to real biological samples. Cylinders were assumed to be oriented with their axis
perpendicular to the incident light and to be infinitely long. Since the radius of the cylinders was
taken to be much smaller than the wavelength of light, the cylinders were approximated as line
dipoles. The effective polarisability per unit length of the cylinder was found using the small
particle limit of the standard Mie scattering coefficients for infinite cylinders [4]. A coupled dipole
formalism [5] was then used to calculate the resulting far field for a given input field. In order to
conduct the numerical study in a manner that was independent of the design of the collection
optics, the resulting far-field was calculated on a cylindrical detector with a radius of 10000λ0.
Detector pixels had an arc length of λ0/2 and the collection numerical aperture was taken as 0.1.

The Jones matrix of the scattering medium at the nth output pixel from an incident field at the
mth input pixel is defined as

TSM
nm =

Tnm,00 Tnm,01

Tnm,10 Tnm,11

 , (S7)

such that En,‖

En,⊥

 =

Tnm,00 Tnm,01

Tnm,10 Tnm,11

Em,‖

Em,⊥

 , (S8)

where (Em⊥, Em‖) are the two orthogonal components of the input field at the mth pixel, and
(En⊥, En‖) are similarly defined for the nth output pixel. Note that the perpendicular and parallel
components of the scattered field, En,⊥ and Em,‖, are defined with reference to the plane spanned
by the cylinder axis and the scattering direction. From Equation S8, it can be seen that the Jones
matrix TSM

nm can be found by separately calculating the fields scattered for the incident fields,
~E‖ = [Em,‖, 0]> and ~E⊥ = [0, Em,⊥]

>. Using Equation S6, Am and Bml can then be computed
from the simulated Jones matrix.

To test the hypothesis put forward in the main text, that is, that Bml � Am for pixel sizes much
larger than a length scale κ which is determined by the smallest of the translation correlation
length [6] or the average speckle size [3], the scattered far fields from two adjacent input pixels
were found in separate simulations. The pixel widths were chosen to be 200 microns, such that
the output speckle field was uncorrelated. In total 200 realisations of disorder were simulated.
For each instance of disorder, Am and Bml were computed and normalised by the total intensity
transmission from the mth pixel across the two input polarisation states. A histogram of the
magnitude of the elements of both Am and Bml is shown in Figures S1(a)-(c) for scattering media
of three different thicknesses, namely R = L/ltr = 1, 2, 3 where ltr is the transport mean free path
for incident light polarised perpendicular to the cylinder axis. In all three cases, the values for
Am are seen to be much greater than those of Bml . Due to the cylindrical geometry used in these
simulations, the Jones matrix is inherently diagonal with off-axis elements that are equal to zero
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(a) (b)

(c) (d)

Fig. S1. Am (red bars) versus Bml (blue bars) for (a) R = 1, (b) R = 2 and (c) R = 3. All matrix
elements, other than those labelled, lie within the blue part of the histogram. (d) R = 3 in the
presence of significant aberrations.

[4], so elements in Am and Bml with contributions from these off-axis elements would also be
equal to zero. As such, only four of the elements in Am and Bml are non-zero.

As discussed further in Ref. [3], similar results can be expected for input pixel sizes larger than
the width of the correlation function, κ, of the scattering medium. When the pixel size is smaller
than κ the output speckle from two adjacent input pixels is correlated such that the correlations
described by the elements of Bml are not negligible. Furthermore, the magnitude of elements
of Bml may also be comparable to Am when the field incident on the scattering medium from
adjacent input pixels overlaps significantly. In single pixel polarimetric imaging, the spatial masks
on the digital micromirror device (DMD) are imaged onto the test object which is located right
next to the scattering medium. Significant aberrations in the imaging optics can hence cause
a spreading of the point spread function, in turn causing the imaged DMD pixels to partially
overlap. Figure S1(d) shows the elements in Am and Bml when there is a partial overlap between
the pixels illuminating the scattering medium. It can be seen that in such a scenario, the elements
in Bml can no longer be considered to be negligible compared to the elements in Am. As such, care
should be taken to minimise the aberrations in the design of a single pixel polarimetric imaging
system.
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3. EXPERIMENTAL MUELLER MATRIX IMAGES
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Fig. S2. Spatially resolved Mueller matrix for the test object without any scattering medium
present, with pixels in all matrix elements other than the M00 element normalised to their re-
spective M00 values.
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Fig. S3. Spatially resolved Mueller matrix for the test object with SM1 present, with pixels in
all matrix elements other than the M00 element normalised to their respective M00 values.
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Fig. S4. Spatially resolved Mueller matrix for the test object with SM2 present, with pixels in
all matrix elements other than the M00 element normalised to their respective M00 values.
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Fig. S5. Spatially resolved Mueller matrix for the test object with SM3 present, with pixels in
all matrix elements other than the M00 element normalised to their respective M00 values.
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