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Polarimetric imaging can provide valuable information
about biological samples in a wide range of applications.
Detrimental tissue scattering and depolarization how-
ever currently hamper in vivo polarization imaging. In
this work, single pixel imaging is investigated as a means
of reconstructing polarimetric images through scatter-
ing media. A theoretical imaging model is presented, and
the recovery of the spatially resolved Mueller matrix of a
test object behind a scattering phantom is demonstrated
experimentally. ©2020Optical Society of America

https://doi.org/10.1364/OL.399554

Development of quantitative techniques for measurement of
biological tissue is vital to improving health care and quality of
life. Significant effort has thus been made to improve optical
bioimaging technology. Predominantly, current methods are
based on measuring optical intensity or wavelength; however,
such measurements forego the additional information given
by the polarization state of light. Not only does polarization
imaging offer additional contrast mechanisms, such as study
of birefringence and diattenuation of collagen networks [1], it
can also reveal tissue composition and micro-structure [2]. In
turn, such information can play a key role in diagnostics and
biomedical research, for example, by improving discrimination
of cancerous tissues [3], enabling detection of glaucoma [4], and
facilitating the study of cartilage diseases [5].

Although in vivo bioimaging methods are sought so as to
reduce the need for invasive biopsies and histological studies,
they are frequently impeded by relatively thick layers of highly
scattering tissue that scramble the spatial and polarimetric infor-
mation contained within an image [6]. Polarization sensitive
optical coherence tomography is a well-established polarimet-
ric imaging technique that rejects scattered light by means of
coherence and polarization gating [7]. Such methods are, how-
ever, typically limited to depths of a transport mean free path
(TMFP), approximately 1 mm in biological tissue, due to the
decrease in the ballistic intensity for thicker samples. To image
deeper, a range of solutions that make use of, rather than reject,
scattered light have been proposed for intensity-based imaging
modalities, including wavefront shaping, full transmission
matrix measurements, use of speckle correlations and single

pixel imaging (see Ref. [8] for a review). Polarization informa-
tion is also known to degrade over longer-length scales [9] and
several attempts have thus been made to measure polarization
from randomly scattered fields. Recovery of the polarization
state of light transmitted through or focused into a scattering
medium, for example, has been demonstrated using a speckle
correlation scattering matrix approach [10] or broadband wave-
front shaping [11], respectively. Although the latter approach
has also been used for structural imaging, polarimetric proper-
ties of the sample were not retrieved. Vector transmission matrix
measurements have also been reported [12], albeit to date their
use has been limited to focal field engineering [13].

This Letter aims to demonstrate full polarimetric imaging of
a sample through scattering media for the first time to the best
of our knowledge. We use a single pixel polarimetric imaging
setup [14,15], which combines sequential variation of the illu-
mination and incident polarization state with spatial integration
of the polarization resolved output to reconstruct an image
[16]. A single pixel polarimetric imaging model and an image
reconstruction algorithm are first discussed before a detailed
description of a proof-of-principle experimental setup is given.
Experimental results of a test object hidden behind scattering
phantoms of varying thickness are then presented.

The imaging configuration considered in this work is
shown in Fig. 1. A test object, hidden behind a static scattering
medium, is illuminated by a coherent spatially modulated beam
with a specific input polarization state generated by a polariza-
tion state generator (PSG). Light transmitted through the object
and scattering medium is then passed through a polarization
state analyzer (PSA), which projects the incident light onto a test
polarization state, before it is subsequently collected by a single
pixel detector. The full polarimetric properties of the object, as
described by the spatially dependent Mueller matrix, can then
be found using multiple measurements with different input
polarization states, analysis states, and illumination profiles.

To model the polarimetric imaging process, consider first dis-
cretizing the transverse spatial coordinates into pixels. The field
incident on the mth pixel of the object can then be described
using the spatially dependent Jones vector EE inc

mj =ψ
k
m
EE j , where

ψk
m describes the amplitude modulation of the kth input spatial

mode and EE j is the Jones vector for the j th input polarization
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Fig. 1. Schematic of a single pixel polarimetric imaging setup.

state. Letting Tobj
m denote the Jones matrix of the mth pixel of the

object, which is assumed to be thin such that diffraction effects
can be neglected, the field at the input surface of the scattering

medium is hence EE obj
mj = Tobj

m
EE inc

mj . Assuming any imaging optics
present do not affect the polarization state and that the object
is placed immediately before the scattering medium, the Jones
vector after the PSA is

EE out
nijk = Ti

∑
m

TSM
nm
EE obj

mj = Ti

∑
m

ψk
mTSM

nm Tobj
m
EE j , (1)

where the 2× 2 Jones matrix, TSM
nm , relates the Jones vectors

at the mth input and nth output pixels and Ti is the spatially
homogenous Jones matrix of the i th PSA.

Since the intensity measured by the single pixel detector is
an incoherent sum of the contributions from all output pixels,
it is convenient to use the coherency vector representation of
light whereby EC = EE ⊗ EE ∗ [17]. In particular, the total spatially
integrated coherency vector EC tot

ijk =
∑

n
EC out

nijk is given by

EC tot
ijk =

∑
m

(
Ti ⊗ T∗i

)
Am EC

obj
mjj +

∑
m

∑
l 6=m

(
Ti ⊗ T∗i

)
Bml EC

obj
mlj ,

(2)
where Am = Bmm, Bml =

∑
n(T

SM
nm ⊗ TSM,∗

nl ), ⊗ denotes the
direct product and ∗ represents complex conjugation. No tem-
poral averaging is required since the illumination is coherent
and all optical elements are static [17]. Equation (2) shows that
the measured coherency vector can be split into two compo-
nents. The first term is an incoherent sum of contributions
from each input pixel, while the second term describes a mixed
contribution from different input pixels. In particular, noting
that elements in TSM

nm relate the field components for the mth
input and nth output pixels, each element of Bml represents an
estimate of the autocorrelation of output polarized fields as a
function of source pixel separation. Typically, this correlation
decreases over a length scale κ , which is determined by the
smallest of the translation correlation length [18] or the average
speckle size [19]. As such, when pixels of a size larger than κ are
used, the field from each input pixel gives rise to an uncorre-
lated output speckle pattern. Accordingly, elements of Am are
much larger in magnitude than those of Bml (see Supplement 1),

whereby EC tot
ijk ≈

∑
m(Ti ⊗ T∗i )Am EC

obj
mjj . With a sufficiently large

pixel, the total integrated Stokes vector at the detector is hence

ES tot
ijk ≈Mi

∑
m

MSM
m
ESobj

mjj =Mi

∑
m

|ψk
m |

2MSM
m Mobj

m ES j , (3)

where we have used the standard matrix 0 to convert between
coherency and Stokes vectors (ES =0 EC ), and between Jones and
Mueller matrices (M=0(T⊗ T∗)0−1) [17]. Note that ES j is
the Stokes vector corresponding to the incident Jones vector EE j

and that MSM
m =0Am0−1.

By definition, the intensity collected by the single pixel detec-
tor, I tot

ijk , is given by the first element of ES tot
ijk , or explicitly

I tot
ijk =

∑
m

|ψk
m |

2
(
Ea T

i MSM
m Mobj

m ES j

)
= E9k · Edij, (4)

where T denotes transposition and the mth element of the

vectors E9k and Edij correspond to |ψk
m |

2 and (Ea T
i MSM

m Mobj
m ES j ),

respectively. The vector Eai is the first row of Mi and corresponds
to the Stokes vector of the i th analyzed polarization state. For
each input and analyzed polarization state, the collected inten-
sity is thus seen to be a scalar projection of Edij on the spatial mask
E9k . By sequentially projecting spatial masks E9k , which make up
a complete spatial basis, Edij can be retrieved using

Edij =9−1 EI tot
ij , (5)

where EI tot
ij = [I

tot
i j1, I tot

i j2, . . . ]
T and E9k forms the kth row of

the matrix 9. Once Edij is obtained for all input and analyzed
polarization states, the set of intensity values for the mth input

pixel can be related to the Mueller matrix of the test object, Mobj
m ,

according to Dm = AMSM
m Mobj

m W, where the mth element of
Edij forms the (i, j )th element of Dm , and the rows (columns)
of the so-called instrument matrix A (W) correspond to the
Stokes vectors of the analyzed (input) polarization states, i.e.,

Eai (ES j ). To uniquely determine the 16 elements of Mobj
m , at least

four input and analyzed polarization states are required. With
suitable PSG and PSA architectures and a known MSM

m , the

spatially resolved Mueller matrix of the object, Mobj
m , can then be

computed on a pixel-wise basis as Mobj
m = (AMSM

m )−1DmW−1.
In practice, however, the presence of noise means that such an
inversion typically yields unphysical results. As such, in this
work the Mueller matrix of the test object was instead computed
using a least squares algorithm (see Supplement 1) that solves for

Mobj
m = argmin

M

∥∥Dm − AMSM
m MW

∥∥
2, (6)

subject to the constraint that the related H matrix is positive
semi-definite [20]. In combination, Eqs. (5) and (6) allow the
spatially resolved Mueller matrix of the object to be retrieved.

The need to know MSM
m , i.e., to pre-calibrate the scattering

medium, contrasts with conventional intensity based single
pixel imaging [16]. Fundamentally, this difference arises since
the scattering medium can change the polarization of light such
that the total transmittance for each polarization channel differs,
whereas for conventional single pixel setups the total transmit-
ted intensity is a fixed proportion of the incident intensity. Two
factors, however, can help to mitigate the burden of calibration
of MSM

m . First, many scattering media only introduce an effective
depolarization of incident light. Determination of the Mueller
matrix then reduces to establishing the corresponding depo-
larization lengths [9] and medium thickness, which is simpler
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than a complete Mueller matrix measurement. Second, for a
wide-sense statistically homogeneous scattering medium, an
ergodic assumption can be made [18]. This implies that if the
input pixel is sufficiently large, the measured Mueller matrix
is an approximation of the ensemble averaged Mueller matrix
because of the spatial averaging. Moreover, MSM

m is consequently
independent of input pixel location, such that only a single
polarimetric measurement is required to determine MSM

m for
all m. For scattering media that are only piecewise stationary,
the associated Mueller matrix for each distinct region would
need to be determined. In this work we present results based
on the ergodic assumption; however, although not reported
here, imaging using the full spatial dependence of MSM

m gives
comparable results [19].

Using the discussed imaging model, single pixel polari-
metric imaging through scattering media was experimentally
tested using scattering phantoms made from 1 µm diameter
silica microspheres (Merck, Monospher 1000 E) embedded
in epoxy resin (Easy Composites GlassCast 50). The fabrica-
tion procedure followed closely that discussed by Tahir et al.
[21]. Biological tissues typically exhibit scattering anisotropy
factors close to 1 and mean free paths (MFPs) ∼100 µm
[22]. As such, the scattering phantoms were designed to have
similar scattering parameters. Taking the refractive indices
of the microspheres and cured epoxy resin to be 1.457 and
1.55, respectively, the scattering anisotropy factor of the
microspheres was found using Mie theory to be g = 0.95.
The MFP of the fabricated phantoms was experimentally
determined (l = 395 µm) by fitting the measured intensity
of transmitted ballistic light for phantoms of different thick-
nesses to the Beer-Lambert law. The corresponding TMFP
is ltr = l/(1− g )= 5 mm. For the experiments reported
here, three scattering media, henceforth referred to as SM1,
SM2, and SM3, with L/l = 18.57, 24.56, 43.13, respectively
(R = L/ltr = 0.85, 1.12, 1.97), were used.

The experimental setup used for single pixel polarimetric
imaging followed the structure of Fig. 1. The PSG consisted of
a laser beam with a wavelength of 638 nm (Cobolt, MLD638)
that was passed through a Glan-Thompson prism with its trans-
mission axis oriented in the y direction, followed by two variable
waveplates (ARCoptix) oriented at 27± 1◦ and 72± 1◦.
Four input polarization states were generated consecutively
by applying the phase shifts (3π/4, 3π/4), (3π/4, 7π/4),
(7π/4, 3π/4), and (7π/4, 7π/4). Theoretically, this con-
figuration minimizes the condition number of W [23], thus
reducing noise amplification in the reconstruction algorithm.
The beam was then spatially filtered and expanded before it was
incident on a digital micromirror device (DMD). The DMD
(Texas Instruments, DLP4500) spatially modulated the beam
and was imaged onto the object resulting in an effective pixel size
of 0.2 mm at the object plane. This pixel size was chosen to be
larger than the average speckle size for SM1, thereby satisfying
the pixel size requirements discussed above for all phantoms.
The object plane was then imaged onto the PSA by a 0.05
numerical aperture lens. Note that the numerical aperture of the
lens affects the measurement SNR but not the imaging resolu-
tion. When a scattering medium is present, it is placed between
the test object and the PSA, such that light transmitted through
the phantom is collected. A division of amplitude PSA, analyz-
ing linearly polarized light at x , y , and 45◦ orientations, as well
as left circularly polarized light, was used. The corresponding
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o 
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S
M

1
(R

 =
 0

.8
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Fig. 2. (a) Illustration of the test object. (b) Comparison of the
first row of the spatially resolved Mueller matrix obtained with and
without SM1 present. Color scale for M00 is in arbitrary units, whereas
other Mueller matrix elements are normalized by the unpolarized
transmittance (M00). Discrepancies seen in low transmittance pixels,
comprising the opaque letter R , are due to noise amplification during
normalization. (c) Image taken by a CMOS camera.

theoretical condition number of A is 3.23. Although PSAs with
lower condition numbers are possible [24], the chosen setup
can be built economically. To enhance the signal-to-noise ratio
(SNR), lock-in detection was also implemented by modulating
the intensity of the laser source using a frequency generator
(TTi, TG330) and sequentially forwarding the measured sig-
nal from the four detectors into a lock-in amplifier (Stanford
Research Systems, Model SR530).

An illustration of the test object used is shown in Fig. 2(a). It
consisted of the letter R printed on a soda lime glass substrate
using low-reflectivity chrome (Thorlabs, R1L3S3P) with a sheet
polarizer (Thorlabs, LPVISE2X2) and scotch–tape adhered
to distinct regions. The transmission axis of the sheet polarizer
was oriented in the x direction. This test object possesses both
a spatial variation in polarimetric properties (i.e., polarizer,
glass, and retarder) as well as transmittance (i.e., the opaque
letter R). Before any measurements were made, the instru-
ment matrices, A and W, were obtained using the eigenvalue
calibration method [25]. A single measurement of MSM

m was
subsequently taken for each scattering medium without the
test object present. Specifically, the entire scattering medium
was uniformly illuminated, and measurements were taken for
each input and analyzed polarization state. MSM

m was then found
using a constrained minimum least squares algorithm analogous
to that above. Validation of the setup can be found in Ref. [19].

Upon insertion of the test object, image data was acquired
by sequentially displaying spatial masks from a scrambled
Hadamard basis of order 16 [26] on the DMD for each input
polarization state. The corresponding intensities recorded by
the photodiodes were processed for each scattering medium

using Eqs. (5) and (6) to recover Mobj
m . The reconstructed

images obtained with and without SM1 present are shown in
Fig. 2(b). For brevity, only the first row of the spatially resolved
Mueller matrices are presented. Full Mueller matrices for all
three scattering media can be found in Supplement 1. M00 is
shown in its original form to highlight reconstruction of the

https://doi.org/10.6084/m9.figshare.12928568
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object’s unpolarized transmittance; however, the remaining
elements are normalized by their respective M00 values so as
to discriminate the polarimetric properties of each pixel more
easily. Qualitatively, it can be seen that the Mueller matrix
obtained with and without SM1 present are very similar. In
contrast, an image taken with a complementary metal–oxide–
semiconductor (CMOS) camera [Fig. 2(c)] exhibits a speckle
pattern with no correspondence to the test object.

The difference between the matrix elements of the normal-
ized Mueller matrices obtained with and without each scattering
medium present was quantified by computing the root-mean-
squared error (RMSE) for each normalized Mueller matrix
element across all image pixels (Fig. 3). Pixels related to the
opaque letter R (found via thresholding the M00 matrix ele-
ment) consist primarily of noise that was further amplified upon
normalization, and hence were excluded when computing the
RMSE. It can be seen that the average RMSE was≈ 0.1 for SM1
and SM2, but increased to ≈ 0.3 for SM3. The increase in the
RMSE reflects the larger depolarization caused by thicker media
and the decrease in the SNR at greater thicknesses. The latter
occurs because more light is scattered out of the collection angle
of the PSA. For example, the total intensity transmitted through
SM3 was 85% lower than that of SM1 for the first analyzed
and input polarization state. Consequently, the reconstructed
images were visibly noisier for thicker phantoms, as evident in
Fig. 4. Nevertheless, polarimetric information was still recov-
erable even for SM3. For instance, note that the first row of the
Mueller matrix of an ideal linear polarizer with its transmission
axis oriented in the x direction is [1,1,0,0]. By comparison, for
scotch–tape and the glass substrate it is theoretically [1,0,0,0].
The right-hand region of the object, corresponding to the linear
polarizer, can be clearly distinguished in Fig. 4. The full Mueller
matrix presented in Supplement 1 shows that all three materials
in the test object can be well distinguished.

In summary, this work has demonstrated single pixel polari-
metric imaging through scattering media. Using a proposed
imaging model, it was shown that under coherent illumination,
single pixel polarimetric imaging through scattering media was
possible for pixel sizes larger than the spatial correlation length
of the scattering medium for which contributions from different
input pixels sum incoherently. This was further demonstrated in
experiments in which the spatially resolved Mueller matrix of a
test object hidden behind scattering phantoms with thicknesses
up to twice the TMFP was reconstructed. As with most tech-
niques, the imaging depth of single pixel polarimetric imaging
is mainly limited by the decrease in the SNR as the thickness of
the scattering medium increases. Nevertheless, the utilization

Fig. 3. RMSE for the normalized Mueller matrix elements.

Fig. 4. Normalized M01 element of the Mueller matrix obtained for
imaging through different scattering media.

of scattered light has enabled imaging at greater depths than
imaging with ballistic light alone.
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