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Abstract
In this work we establish universal ensemble independent bounds on the mean and variance of the
mutual information and channel capacity for imaging through a complex medium. Both upper
and lower bounds are derived and are solely dependent on the mean transmittance of the medium
and the number of degrees of freedom N. In the asymptotic limit of large N, upper bounds on the
channel capacity are shown to be well approximated by that of a bimodal channel with
independent identically Bernoulli distributed transmission eigenvalues. Reflection based imaging
modalities are also considered and permitted regions in the transmission-reflection information
plane defined. Numerical examples drawn from the circular and DMPK random matrix ensembles
are used to illustrate the validity of the derived bounds. Finally, although the mutual information
and channel capacity are shown to be non-linear statistics of the transmission eigenvalues, the
existence of central limit theorems is demonstrated and discussed.

1. Introduction

The need to image through a complex scattering medium occurs frequently in, for example, biomedical
optics, aerial reconnaissance, remote sensing and astronomy [1–3]. Such efforts are, however, frequently
impeded since upon transmission through complex media the structure of the incident image field is
strongly modified resulting in a randomly varying output speckle pattern bearing little or no resemblance to
the original image. To overcome this problem numerous techniques have been developed in recent years.
Measurement of the transmission matrix of a scattering medium, for example, allows retrieval of the
original image by application of the associated inverse operation [4–6]. Short range correlations in the
output speckle pattern can also be leveraged to enable numerical image reconstruction by means of either
iterative phase retrieval or cross-correlation based algorithms [7–9]. Alternatively, single pixel imaging
techniques extract information through sequential variation of the illumination basis in combination with
spatial integration of the output speckle, allowing the initial image to be rebuilt in terms of its constituent
spatial modes [10, 11].

As a consequence of the inherent randomisation of an image caused by transmission through a
scattering medium, a computational step is always required to obtain a final image. Although good imaging
results have been reported in a variety of experimental setups, the quality of such computational images can
frequently be algorithm dependent, making comparison and benchmarking more difficult, an issue also
encountered with other imaging modalities [12–14]. Traditionally reported metrics of imaging
performance, such as the spatial resolution or fidelity of the output image [15], critically do not distinguish
between the detrimental effects of scattering in the medium and data post-processing. Whilst the former is
fundamental, the latter can in principle be improved through better algorithm design. It is therefore natural
to ask what fundamental limitations are imposed by transmission through a scattering medium, a problem
which we consider in this work. Notably, this limit is closely related to the degree of control achievable in
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wavefront shaping experiments [16, 17] in scattering environments and thus constrains the set of realisable
wave fields [18]. Considering that the input and transmitted images are highly dissimilar, conventional
imaging quality metrics are notably unsuitable to address this question. Instead we adopt an information
based perspective, which has a rich history in optical imaging [15, 19–24], whereby the output speckle
pattern is treated as a message from which we extract information about the scene of interest.

The greater suitability of information based metrics to quantify transmission through disordered media
has motivated a number of related studies [25–28]. For instance, it has been shown that interference effects,
which are prevalent in scattering environments, affects the rate of information transmission between
antenna arrays [29]. Information-theoretic metrics, such as the channel capacity of an information channel
have furthermore been directly related to, and shown to decrease as a result of, mesoscopic correlations
between scattered waves [30]. The mutual information between reflected and transmitted speckle images
has also been recently investigated [31]. These studies, however, are typically either limited to the dispersive
regime or require a priori statistical knowledge of the scattering properties of the medium. Moreover, focus
has generally been restricted to either wireless communications or transmission through wires and previous
results are thus less applicable to an imaging context. In this work we therefore ask the question of whether
there exist fundamental system and algorithm independent bounds on how much information encoded as
images can be transmitted through a complex scattering medium. Making no assumptions on the nature of
the scattering medium, other than to restrict to statistical ensembles with a given mean transmittance, we
show that the answer to this question is in the affirmative. We derive and discuss these bounds. Our analysis
centres around Shannon information [32] based metrics, such as mutual information and channel capacity,
since these provide a direct characterisation of global information content of an image and the limits
imposed by a scattering medium. Fisher information, although related [33, 34], is less germane to the
question at hand since it pertains to the task of statistical estimation and image reconstruction [35, 36] as
opposed to information transmission. The structure of this article is therefore as follows. We begin in
section 2 by formalising the information theoretic treatment of imaging through scattering media, before
performing a Monte Carlo based study of the statistical properties of some common statistical ensembles
describing scattering in complex media in section 3. Derivation and discussion of universal ensemble
independent bounds on the mean and variance of our information-theoretic metrics is given in section 4
where comparison to numerical results is also given. Finally, our conclusions are given in section 5.

2. Information in imaging through scattering media

Before it is possible to quantify the effect of transmission through a scattering medium, it is first necessary
to formalise the information content of the starting image. To do so we begin by noting that the number of
degrees of freedom N of an optical image are, in general, limited. For a digital image these degrees of
freedom naturally correspond to the number of pixels present, whilst for analog images the limit can derive
from the finite bandwidth with which the image is generated or recorded (i.e. the spatial resolution) [22].
Although finite, the degrees of freedom of an image can nevertheless be used to encode information, such
that an image can be considered as a single symbol from an information source with a source alphabet of
S = {S1, S2, . . . , SN} [32]. As a concrete example, consider a digital image comprising of N pixels with a
fixed total power corresponding to a single photon. The N symbols can be encoded onto the position of the
photon, whereby Sj then corresponds to the photon being registered on the jth pixel of the image. The
information encoded in the photon’s position can then be quantified using the Shannon entropy,
H(S) = −

∑N
j=1 p(Sj) log p(Sj), where p(Sj) is the probability that the photon is observed in the jth image

pixel. The total information encoded in an image composed of n photons is thus nH(S). Note, that for ease
of notation we shall use p(· · ·) throughout this work to denote different probability distributions, where the
associated relevant random variable will be apparent from the argument.

Although it is natural to consider each pixel of an image as an individual degree of freedom, it is equally
legitimate to instead consider utilising different extended spatial modes, drawn from a complete
orthonormal set of basis functions, to encode information. The basis functions must capture the N degrees
of freedom present in the image. One possible choice of such basis functions is, for example, the Hadamard
functions, which are frequently used in single pixel imaging [11]. With this interpretation an arbitrary input
image field can be represented as a superposition of spatial modes with associated mode coefficients
a = [a1, . . . , aN]. In turn, the probability that a photon, chosen at random from all photons which make up
the input image, is in the jth mode is given by p(Sj) � pj = |aj|2/

∑N
k=1 |ak|2, where we define the shorthand

notation pj for convenience. Naturally, each pixel can also be considered a spatial mode, whereby |aj|2 is the
intensity of each image pixel.

An image field incident upon a scattering medium generates both a reflected and transmitted field, both
of which can also be represented as a superposition of spatial modes. Accordingly, the effect of a medium on
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the incident image can be described using the scattering matrix S of the medium, viz.[
b
c

]
= S

[
a
0

]
(1)

where b = [b1, . . . , bN] (c = [c1, . . . , cN]) are vectors of the mode coefficients of the reflected (transmitted)
fields. Note that we assume the number of input and output modes are equal for simplicity. For a lossless
system we can express the scattering matrix using the polar decomposition [37]

S =

[
V O

O U

] [
−
√

1 − τ
√
τ√

τ
√

1 − τ

] [
V

′
O

O U
′

]
, (2)

where O is the null matrix, U, U′, V and V′ are unitary matrices of singular vectors, and τ is a diagonal
matrix containing the transmission eigenvalues [τ 1, . . . , τN]. To simplify the analysis we henceforth assume
the input and output modes correspond to the singular basis of the medium such that U, U′, V and V′ in
equation (2) can be replaced by the identity matrix. Since this change of basis is performed using a unitary
transformation and is hence fully reversible, no spatial information is lost [38]. Within this framework, in
this work we consider three scenarios, namely measuring in (i) transmission, (ii) reflection or (iii) both.
Specifically, when measuring in transmission we input modes a and measure the transmitted intensities of
each mode i.e. |cj|2. The output alphabet contains symbols denoted T1, T2, . . . , TN, corresponding to the N
transmission modes. In measuring all |cj|2 (j = 1, . . .N), however, we also learn about how much energy is

in the aggregate of the reflected modes (
∑N

j=1 |bj|2) since by conservation of energy∑N
j=1 |aj|2 =

∑N
j=1 |bj|2 +

∑N
j=1 |cj|2. We denote this additional possible output symbol by TN+1, such that

the complete output alphabet is T = {T1, . . . , TN , TN+1}. Reflection based measurements are similar
albeit we now measure the reflected mode intensities |bj|2. Again through this measurement we also learn
about the total transmitted intensity

∑N
j=1 |cj|2, such that the output alphabet is R = {R1, . . . , RN , RN+1}.

When measurements are made in both reflection and transmission the corresponding alphabet of the
output is U = {R1, . . . , RN , T1, . . . , TN}. Note that in this latter case the aggregate output symbols (i.e.
the (N + 1)th outputs) are omitted.

Thus far it has been implicitly assumed that the basis of spatial modes used to express the input and
output images is complete, in the sense that arbitrary input and output image fields with N degrees of
freedom can be represented. Taking a basis of angular channels (i.e. the Fourier domain is discretised) for
concreteness, this implies that all spatial frequencies of the original image are incident onto the scattering
medium, and similarly that all output spatial frequencies are collected. The former is easily achieved by
matching the numerical aperture (NA) of the illumination optics to the spatial bandwidth of the initial
image. Use of finite NA collection optics, however, means that light that is scattered out of the medium at
large angles is not measured and thus the detection basis is not complete as assumed. This scenario can be
approached using filtered scattering matrices, as is detailed further in reference [39]. Alternatively, the input
and output bases can be expanded so as to include all possible angular modes and the undetected output
modes instead incorporated into the aggregate channels described above. For example, when measuring in
transmission with a finite NA lens, the aggregate channel TN+1 would include all of the reflected modes in
addition to the angular modes lying outside the NA of the collection optics. The latter is preferable from an
informatic standpoint since it is more apparent where information is lost in the system.

The quality of information transmission through a scattering medium can be quantified using the
mutual information per photon between the measured output mode intensities (including the aggregate
modes for cases (i) and (ii)) and the original image, defined as

IN = I(S;N ) = H(N ) − H(N|S) (3)

where N = T , R or U for cases (i)–(iii) respectively and

H(N|S) = −
∑

Nj∈N

∑
Sk∈S

p(Nj, Sk) log p(Nj|Sk) (4)

is the conditional entropy, or equivocation, of N given S. Noting p(Nj, Sk) = p(Nj|Sk)pk and
p(Nj) =

∑N
k=1 p(Nj, Sk), the mutual information can be calculated from the source probabilities pk and the

set of conditional probabilities p(Nj|Sk). The latter can be found from the scattering matrix S. From
equations (1) and (2) we have b = −

√
1 − τ · a, which implies

|bj|2 =
N∑

k=1

ρkδjk|ak|2 (5)
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where ρj = 1 − τ j is the reflectance of the jth eigenmode of the scattering medium and δjk is the Kronecker
delta. Upon normalising by the total incident intensity and comparing to the law of total probability we can
make the association p(Rj|Sk) = ρkδjk for j = 1, . . .N. Similarly it follows that p(Tj|Sk) = τ kδjk for
j = 1, . . . , N. These probabilities are sufficient when considering case (iii) (N = U), however cases (i) and
(ii) require the further probabilities p(TN+1|Sk) = 1 − τ k and p(RN+1|Sk) = τ k respectively, which follow by
summing equation (5) (and the equivalent expression for |cj|2) over j. Physically this embodies the fact that
the transmittance (reflectance) of a medium describes the fraction of photons that are transmitted
(reflected). Substituting these probabilities into equation (3) we find

IN = H(S) + ΛN

N∑
j=1

PN
j log PN

j , (6)

where we have defined ΛN =
∑N

k=1 η
N
k pk, ηTk = ρk, ηRk = τk, ηUk = 0 and the probabilities

PN
j = ηNj pj/ΛN . (7)

The first thing to note from equation (6) is that by measuring the intensity in all possible output modes
(N = U) we are able to extract all the information contained in the original image, as would be intuitively
expected given the system is assumed to be lossless. If, however, we do not measure the reflected
(transmitted) modes as in case (i) (case (ii)) we lose an amount of information equal to
−ΛN

∑N
j=1 PN

j log PN
j . Physically, PN

j represents the probability that a photon, taken from only those

modes that are not directly measured, is in the jth spatial mode. Accordingly −
∑N

j=1 PN
j log PN

j can be
interpreted as the Shannon entropy contained in only the reflected (transmitted) modes, however, when
considering all possible output modes this information must be weighted by the relative fraction of energy
carried by the reflected (transmitted) waves, i.e. by ΛN .

It is well known that Shannon entropy is maximised when the probability of each underlying state is
equally likely [32]. For a system with a given transmittance, it is therefore evident from equation (6) that
the information loss is greatest when the expected energy in each of the lossy modes (i.e. the reflected or
transmitted modes for cases (i) and (ii) respectively) is equal, specifically PN

j = 1/N. If the source entropy
is maximised pj = 1/N, this corresponds to a uniform eigenvalue spectrum. More generally, however, the
information loss from transmission through a scattering medium is dependent on both the input image
(due to the pj dependence) and the spectrum of transmission eigenvalues. The channel capacity of the
scattering medium, which describes the maximum information that can be transmitted through the
medium over the space of all input images, offers a more general source independent method to quantify
information loss. Specifically, for a fixed scattering medium, the channel capacity can be found by
maximising the mutual information IN with respect to the input probabilities pj, i.e. CN = sup{pj} IN .

Using the standard result for maximum Shannon entropy mentioned above, it follows immediately that
CU = log N [32]. To determine CT and CR, we must however maximise the mutual information, subject to
the constraint

∑N
j=1 pj = 1, explicitly using the method of Lagrange multipliers. So doing yields the result

that CN = − log p̃k + ηNk log P̃N
k , where we use the tilde notation to denote optimal quantities, which

must hold for all k = 1, . . . , N. Using the definition for PN
j to replace p̃k in this relation yields, upon

rearrangement,

P̃N
k =

(
ΛN exp[CN ]

ηNk

)1/(ηNk −1)

. (8)

Summing over k gives the transcendental equation

1 =

N∑
k=1

(
ΛN exp[CN ]

ηNk

)1/(ηNk −1)

, (9)

which with knowledge of all transmission eigenvalues can be solved numerically to find ΛN exp[CN ]. The
optimal P̃N

k then follow from equation (8). In turn the input probabilities that maximise the mutual
information and achieve the channel capacity follow according to

p̃Nk =
P̃N

k

ηNk

/
N∑

j=1

P̃N
j

ηNj
(10)

which further allows ΛN and CN to be calculated individually. Equation (9) is formally equivalent to the
condition found for the channel capacity of a reduced information channel [32]. Although still dependent
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Figure 1. Histograms of channel capacities CN for imaging in transmission and reflection, for differing mode numbers N,
calculated using 2 × 104 realisations of transmission eigenvalues drawn from the CUE and COE.

on the precise details of the spectrum of transmission (or reflection) eigenvalues, i.e. ηNk , in appendix A we
show that both CN and IN are decreasing functions of ηNk . Accordingly we find that modes with larger ηNk
individually contribute more significantly to the total information content of the measured signal. It should
also be noted that in the derivation above it has been assumed that 0 < ηNk < 1. If ηNk = 0 or 1 for some k
additional care must be taken in the maximisation. Illustration of how such cases can be approached is
given in appendix B where we derive the channel capacity for the extreme case of a bimodal information
channel, i.e. one for which ηNk are Bernoulli random variables. Specifically, we show that when K elements
of the vector η = [ηN1 , . . . , ηNN ] are zero, corresponding to so-called open channels [40], (N − K elements
are hence unity) the channel capacity is given by CN = log[K + 1 − δKN ].

3. Statistical properties of informatic metrics

The transmission properties of scattering media are in general random and thus the mutual information
upon transmission of a known image and the channel capacity of the medium differ case by case. If the
scattering matrix of a given medium is known, individual results can nevertheless be calculated. The
stochastic variability of these information-theoretic quantities is however intrinsically linked to the
underlying probability distribution function (PDF) of the transmission eigenvalues, p(τ ), and thus differs
depending on the physics at hand. Chaotic behaviour, for instance, can arise in systems where waves are
scattered from structures whose typical dimensions are large relative to the wavelength of the scattered
waves, whereby ray dynamics is dominant [41]. Random matrix theory is known to provide a good
statistical description of the scattering matrices of such systems [40, 42] through use of Dyson’s circular
ensembles [43]. Random disordered systems, in which incident flux is on average equally distributed among
all possible outgoing channels, are however better described using the theory of Dorokhov [44], and Mello,
Pereyra and Kumar [45] (DMPK), which describes evolution of p(τ ) with medium thickness using a
Fokker–Planck equation. In each of these cases, and indeed more generally, the precise form of the PDF
governing the transmission eigenvalues (and hence IN and CN ) is dependent on the number of
transmission modes N [42]. To illustrate this point, in figure 1 we plot PDFs of the channel capacities CT
and CR, calculated using 2 × 104 realisations of scattering matrices sampled from the circular unitary
(CUE) and orthogonal ensembles (COE), for different N. Scattering matrices drawn from the CUE are only
constrained so far as to ensure S is unitary, such that the PDFs found for transmission (blue bars) and
reflection (purple) are identical (within statistical fluctuation). The further constraint of time reversal
symmetry is however imposed on scattering matrices sampled from the COE. By virtue of the resulting
coherent back scattering, in which time reversed scattering trajectories constructively interfere [42], it is
seen that the channel capacity for measurements made in reflection (yellow bars) is on average larger than
that for transmission measurements (green). Differences in p(CR) and p(CT ) are particularly marked for
low N, however, for larger numbers of modes the PDFs both converge to a normal distribution, suggestive
of a central limit theorem (CLT). Similar asymptotic behaviour is also seen for the CUE and DMPK
ensemble and for PDFs of the mutual information (not shown).

Each term in the summation of equation (6) (and the equivalent for CN ) can be considered as different
random variables, however, existence of CLTs (for N �= U) for large N is non-trivial since non-zero
correlations between the transmission eigenvalues violate the usual independent random variable
approximations required for conventional CLTs to hold [46]. It has been shown that any linear statistic of
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Figure 2. (a) Mean channel capacity C̄T of a random medium vs. number of modes N calculated using 2 × 104 transmission
eigenvalues drawn from a COE (dark gray line with square markers). Dotted line represents lower bound of (1 − η̄) log N,
dashed line shows upper bound described by equation (16) whereas dot-dashed line shows upper bound of log N. Shaded gray
(blue) area depicts the band defined by C̄T ± σC̄T calculated using Monte Carlo results (minimum of equations (18) and (19)).
(b) As (a) except transmission eigenvalues are drawn from the DMPK ensemble, and channel capacities are plotted as a function
of the scattering medium thickness L relative to the mean free path l.

the transmission eigenvalues [47] does still obey a CLT even in the presence of eigenvalue correlations,
however it is important to note that IN and CN are not linear statistics of τ j. This observation is in contrast
to previous works, e.g. [27], and is a result of the aggregate symbols RN+1 and TN+1 which, by definition,
depend on all eigenvalues. This non-linear dependance also implies that the mean properties of IN and CN
are not wholly determined by the average eigenvalue spectrum, since higher order statistical moments can
play an important role. CLTs for a restricted class of multi-linear statistics have been demonstrated [48],
however, in the current context the CLT can be most easily justified through extension of the rationale of
reference [49] for linear statistics. This is detailed in appendix C. Existence of such CLTs is restricted to the
same cases as described in reference [47] and do not exist for all possible ensembles.

Full statistical parametrisation of the channel capacity and mutual information can give deep insights,
however, from a practical point of view the values expected on average, and the degree to which they vary
between media of the same statistical class, are more convenient. Accordingly, we here consider
C̄N = Eη[CN ] and σ2

CN
= Eη[C2

N ] − C̄2
N (and analogous quantities for IN ), where Eη[· · ·] denotes the

statistical expectation over the ensemble of possible η (or equivalently τ ). Given the CLTs discussed above,
for large N these parameters can be sufficient to uniquely describe the full PDF. Figure 2(a) shows the
dependence of the average channel capacity for transmission measurements (C̄T ) as a function of N (dark
gray line with square markers) when the scattering matrix is drawn from the COE as calculated using
Monte Carlo simulations. The shaded gray area, moreover, depicts the corresponding band defined by
C̄T ± σC̄T . Average channel capacity is seen to increase sub-linearly as mode number increases in contrast
to other geometries in which a linear increase has been found [25, 29]. Furthermore figure 2(b) shows C̄T
for scattering matrices drawn from a DMPK ensemble for disordered media of varying thicknesses L
(measured in mean free paths l). Scattering matrices in this case were generated using the technique detailed
in reference [50]. It is evident that channel capacity in transmission decreases as the mean transmittance of
each eigenchannel (which are equal for all eigenchannels within the DMPK model) decreases since
τ̄ ∼ (1 + L/l)−1 [51].

4. Universal bounds on mean information

Although numerical results, as shown in figures 1 and 2, are insightful, exact analytic results are preferable.
The complexity of the PDFs governing τ however preclude determination of exact analytic results.
Moreover, ensemble specific results are somewhat restrictive and not applicable to different classes of
scattering media. As such we instead now consider derivation of ensemble independent informatic bounds.
For measurements made in both reflection and transmission (case (iii)) our analysis is particularly simple
since all information is retrieved such that C̄U = log N, ĪU = H(S) and σ2

CU
= σ2

IU = 0. For cases (i) and
(ii), whilst it is immediately obvious that regardless of the underlying statistics CN � log N and
IN � H(S), tighter upper bounds, parametrised only by the mean reflectance or transmittance respectively,
can be derived. To do so relies upon the observation that both CN and IN are convex functions with respect
to ηNk , which we prove in appendix A. Since the analysis is identical for N = R and T we temporarily drop
the N superscripts on ηj for clarity.
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Convexity of both the channel capacity and mutual information means that lower bounds for their
expectations immediately follow from Jensen’s inequality [52], namely CN (η̄) � C̄N and IN (η̄) � ĪN
where η̄ = Eη[η]. For a balanced channel for which all mean eigenvalues are equal (η̄j = η̄ for all j) these
lower bounds take the simple form (1 − η̄) log N � C̄N and (1 − η̄)H(S) � ĪN . Equality is achieved for a
deterministic medium with fixed transmittance. We thus note that the channel capacity of a random
scattering medium is on average larger than that of a deterministic channel.

Derivation of an upper bound for C̄N again invokes convexity of CN . Specifically, convexity with respect
to η1 implies that CN (η1, η2, . . .) � (1 − η1)CN (0, η2, . . .) + η1CN (1, η2, . . .). Since CN is convex with
respect to all ηj similar inequalities can be sequentially applied yielding

C̄N �
∑
u∈P

CN (u) Eη

⎡⎣∏
i∈Au

(1 − ηi)
∏
j∈Bu

ηj

⎤⎦ , (11)

where P is the set of all N-tuples u = [u1, u2, . . . , uN] of {0, 1} (i.e. uj = 0 or 1 for all j), whereas Au and Bu

are the sets Au = {i|1 � i � N, ui = 0} and Bu = {j|1 � j � N, uj = 1}. The cardinality of the sets are
#P = 2N, #Au = K and #Bu = N − K = |u|2. Equation (11) gives an upper bound no worse than log N
for arbitrary unconstrained ensembles as shown in appendix D. Letting w(u) =

∏
i∈Au

(1 − ηi)
∏

j∈Bu
ηj and

w̄(u) = Eη[w(u)] we observe that ∑
u∈P

w(u) =
∑
u∈P

w̄(u) = 1. (12)

Accordingly the upper bound in equation (11) represents the weighted average of the channel capacity that
can be sent through bimodal information channels (i.e. an information channel for which ηi = 0 or 1 for all
i). The weightings in the mixture, however, depend on the statistics of the transmission eigenvalues as
parametrised by the set of w̄(u). A universal, i.e. ensemble independent, upper bound on the mean channel
capacity can thus be found by maximising the right-hand side of equation (11) with respect to the
expectations w̄(u). This maximisation is however performed subject to a number of constraints on w̄(u)
beyond that given by equation (12). Firstly we note that because 0 � ηi � 1 for all i, the weights are
themselves bounded such that 0 � w̄(u) � 1. Furthermore for cases (i) and (ii) we consider the total
reflectance and transmittance, respectively, given by g(η) =

∑N
i=1 ηi. Noting that

gN (. . . , ηj, . . .) = (1 − ηj)gN (. . . , 0, . . .)
+ ηjgN (. . . , 1, . . .) it follows (similarly to above) that

∑
u∈P

(N − K)w̄(u) =
N∑

i=1

η̄i � ḡN , (13)

where η̄i = Eη[ηi] is the mean of the ith transmission eigenvalue. The right-hand side of equation (13)
physically corresponds to the mean total reflectance (transmittance) of the scattering medium, denoted ḡN .

When considering the universal upper bound on the mean mutual information ĪN , the maximisation
must in general be performed numerically since the bound is strongly dependent on the source image
through pj. Analytic results can however be found for the universal upper bound on the channel capacity by
noting that CN (u) in equation (11) represents the channel capacity for a bimodal channel with K open
channels, i.e. CN (u) = log[K + 1 − δKN] (see appendix B). Since CN (u) depends only on the number of
zero elements in u and not on the ordering of the elements equation (11) can be written as

C̄N �
N∑

K=0

w̃K log[K + 1 − δKN] (14)

where w̃K =
∑

u∈UK
w̄(u) is the sum of the weights over the set UK of bimodal channels with |u|2 = N − K.

For a system with total mean reflectance (transmittance) of ḡN the constraints can be similarly written∑N
K=0 w̃K = 1 and

∑N
K=0 (N − K)w̃K = ḡN . Maximisation of the right-hand side of equation (14) occurs

when

w̃j =

⎧⎪⎪⎨⎪⎪⎩
k + 1 − ḡN if j = N − k

ḡN − k if j = N − k − 1

0 otherwise

(15)
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Figure 3. (a) (CT , CR) plane depicting allowed domains for channel capacities of individual scattering media (blue and gray
shaded area combined) and ensemble averaged capacities (gray shaded area only). Bounding curves correspond to
CR + CT = log N (dotted blue), CR = log N and CT = log N (dot-dashed blue curve) and parametric curve defined by
(C̄max

T (τ̄), C̄max
R (τ̄)) (dashed blue). Positions of average capacities (C̄T , C̄R) for COE (purple circle) and CUE (blue square) are

shown. Solid gray curve shows the mean (C̄T (τ̄), C̄R(τ̄)) curve for the DMPK ensemble (solid gray) found from Monte Carlo
simulations. Point clouds correspond to 250 individual realisations drawn from the DMPK ensemble with differing mean
transmittance N τ̄ . N = 25 was used for all ensembles. (b) Comparisons of the upper bound on the channel capacity Cmax

N (solid
curves) to that of a bimodal channel with independent identically Bernoulli distributed transmission eigenvalues (dashed curves)
in the (CT , CR) domain.

where k = floor[ḡN ]. The corresponding universal upper bound on the channel capacity (see appendix E) is
hence C̄N � C̄max

N where

C̄max
N = [k + 1 − ḡN ] log[N − k + 1 − δk0] + [ḡN − k] log[N − k]. (16)

Both the upper and lower bounds on the mean channel capacity are shown in figure 2 (dashed and dotted
curves respectively), in addition to the weaker upper bound of log N (dot-dashed curve). Neither of these
upper or lower bounds can be improved without further restricting the properties of the statistical
ensembles under consideration.

We have seen above that when measurements are made in both reflection and transmission (case (iii))
all information encoded in the original image can be extracted. It may hence be intuitively expected that if
the mutual information (or channel capacity) for transmission measurements is larger, then the
corresponding value for reflection measurements is smaller. Each pair of metrics, e.g. (CT , CR), define an
information plane as illustrated in figure 3(a), on which such relations can be visualised. Through simple
manipulation of equation (6) and application of Gibbs’ inequality [32] it can be shown that
H(S) � IR + IT � 2H(S) and similarly log N � CR + CT � 2 log N. In combination with our earlier
bounds these inequalities imply that a single scattering medium drawn from any ensemble with fixed mean
transmittance is described by a single point lying in a triangular region of the associated information plane.
Figure 3(a) illustrates this permissible region (combination of the blue and gray shaded areas) when
considering the (CT , CR) plane. Note that for the case of a balanced ensemble, the CT + CR = log N
boundary (dotted blue line) corresponds to the lower bound given by Jensen’s inequality found above.
Channel capacities for individual realisations of scattering media drawn from the DMPK ensemble are also
shown in figure 3(a) assuming N = 25. Distinct clusters of points are evident and correspond to differing
mean transmittances (N τ̄) and lie along the parametric curve (solid gray curve with markers) defined by
(C̄T , C̄R). Individual realisations are shown for equally spaced values of τ̄ ranging from 0.95 to 0.15. As
discussed above decreasing τ̄ corresponds to thicker samples. Average channel capacities for thicker samples
are hence again seen to be greater in a reflection modality. Noting that log N � C̄R + C̄T also holds, such
parametric curves for the mean channel capacities of other statistical ensembles must also lie within the
triangular region shown in figure 3(a). Bounds on C̄N derived above, however, further restrict the allowed
region to that depicted by the gray shading. (C̄T , C̄R) points corresponding to the COE (purple circle) and
CUE (blue square) are also shown and clearly lie within this admissible region.

Interestingly, we also find that in the asymptotic limit of large N, the upper bound defined by
(C̄max

T , C̄max
R ) can be well approximated by the mean channel capacity found when the transmission

eigenvalues are independent identically distributed Bernoulli random variables with mean of η̄ = ḡN /N

8
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namely

C̄b
N =

N∑
j=0

(
N
j

)
η̄ j(1 − η̄)N−j log[N − j + 1 − δj0]. (17)

The quality of this approximation is shown in figure 3(b). At this point we also note an interesting
connection with the results of reference [18] in which it was demonstrated that in the diffusive regime there
are at best gT degrees of freedom when attempting to focus light through a disordered medium. In this
scattering regime the eigenvalue spectrum corresponds to a bimodal distribution which is highly
concentrated at both τ k ≈ 0 and τ k ≈ 1 [45]. The degrees of freedom available to engineer the light field in
a scattering medium are thus those that preserve the information about the source field. Our results show
that this intuitive rule also represents a rigorous limit beyond the diffusive scattering regime. Moreover,
within an imaging context, we note the aggregate channel provides additional information.

Finally we consider what universal bounds exist for the variance of the channel capacity (our discussion
will be solely in terms of the channel capacity, however analogous results hold for the mutual information
IN ). As with the case for the channel capacity, a deterministic scattering medium provides the trivial lower
bound on the variance in which case σ2

CN = 0. For any bounded random variable X (0 � X � 1) the
Bhatia–Davis inequality states that variance of X has a maximum value of x̄(1 − x̄) when X is Bernoulli
distributed and where x̄ is the mean of X (or equivalently the probability that X = 1) [53]. Transforming
this result onto the problem of determining the maximal value of σ2

CN
we have σ2

CN
� C̄N (log N − C̄N ).

This expression is however not ensemble independent due to the dependence on the mean channel capacity.
Instead the variance must be maximised subject to the inequality constraints derived above. Maximum
variance is again achieved when CN is Bernoulli distributed whereby

σ2
CN �

⎧⎪⎪⎨⎪⎪⎩
C(η̄)(log N − C(η̄)) if 2C(η̄) � log N,

C̄max
N (log N − C̄max

N ) if 2C̄max
N � log N,

(log N)2/4 otherwise.

(18)

We note that when the CLT discussed above holds, equation (18) only gives a loose bound on the variance
due to the differing nature of the Gaussian and Bernoulli distributions applicable in each case. The
significant difference between the calculated variances and the limiting values is evident in figure 2.

An alternative upper bound on the variance of the channel capacity can however also be derived which
can sometimes give slightly improved constraints in comparison to equation (18) (this accounts for the
slight kink in the blue band plotted in figure 2(b)). To do so we first note that CN is a non-negative convex
function with respect to η, such that taking the square preserves convexity [52]. Following a maximisation
procedure similar to that given above, albeit for Eη[C2

N ], gives

σ2
CN � w̃β log [β + 1 − δβN ]2 + w̃γ log [γ + 1]2 − C2

N (η̄), (19)

where w̃γ = 1 − w̃β and we have used the lower limit on C̄N to express the bound in an ensemble
independent manner. The explicit expressions for β, γ and w̃β are dependent on both m = min[N − 1, 4]
and k = floor[ḡN ]. Specifically if k < n − m then β = N − k, γ = β − 1 and w̃β = k + 1 − ḡN .
Alternatively if k � n − m then β = m, γ = 0 and w̃β =

(
N − ḡN

)
/m.

5. Conclusions

In conclusion, in this work we have considered the informational limits on image transmission through
complex media using a random scattering matrix based formalism. Information-theoretic quantities,
namely the mutual information and channel capacity, were considered in preference to more conventional
imaging metrics due to the inherent randomisation, and resulting poor image fidelity, caused by scattering
in such media. Through Monte Carlo simulations of media described by the COE, CUE and DMPK matrix
ensembles, we have numerically studied the full statistical distribution of these metrics and demonstrated
the existence of CLTs in the asymptotic limit of large mode numbers. Formal existence conditions for such
CLTs were also highlighted.

Whilst such numerical and ensemble specific results are both interesting and useful, they are
nevertheless limited in scope. In this work, we have therefore established universal upper and lower bounds
on the mean mutual information and channel capacity of image transmission through a complex medium.
Specifically, the lower bound was found to match that of a fixed transmittance deterministic channel,
whereas the upper bound corresponds to a mixture of bimodal channels. For systems with a large number
of degrees of freedom, the upper bound on channel capacity was found to be well approximated by that of a

9
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bimodal channel with independent identically Bernoulli distributed transmission eigenvalues. Bounds on
the variance of the channel capacity were also derived, albeit found to provide only loose bounds for the
numerical cases considered since limiting values of the variance are achieved when the channel capacity is
Bernoulli distributed. Notably, the limits found here do not require any a priori statistical knowledge of the
medium other than the mean transmittance and are applicable beyond the more usual diffusive regimes
considered in the literature. Given their ensemble independent nature, these bounds hence act as
fundamental limits in imaging through scattering media and provide a benchmark to evaluate the many
emerging techniques for imaging through complex media.
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Appendix A. Convexity of mutual information and channel capacity with respect to
transmission eigenvalues

To prove convexity of the mutual information IN with respect to the parameters ηj we show that its Hessian
matrix Hη is positive semi-definite. We must thus evaluate the derivatives ∂IN /∂ηj∂ηk. Note that we drop
the N notation throughout this section for clarity. Consider then the first order derivative

∂IN
∂ηk

=

N∑
j=1

∂

∂ηk

[
−pj log pj + ηjpj log Pj

]
(A1)

=

N∑
j=1

[
δjk pj log Pj +

ηjpj

Pj

∂Pj

∂ηk

]
(A2)

= pk log Pk + Λ

N∑
j=1

∂Pj

∂ηk
= pk log Pk, (A3)

where we have used the derivatives ∂Λl/∂pk = ηk and ∂Pj/∂pk = ηj[δjk/Λl − pjηk/Λ
2
l ] and the last step

follows since
∑N

j=1 ∂Pj/∂ηk = ∂[
∑N

j=1 Pj]/∂ηk where
∑N

j=1 Pj = 1 is a constant. Since pj and Pj lie in the
range [0, 1] it follows that the first derivative is always negative, i.e. the mutual information is a decreasing
function with respect to all ηj. The second order derivative takes the form

∂2IN
∂ηk∂ηl

=
pk

Pk

∂Pk

∂ηl
=

pk

Pk

∂

∂ηl

[
ηkpk∑N
j=1 ηjpj

]
(A4)

=
p2

k

Pk

[
δkl

Λ
− ηk

Λ2 pk

]
(A5)

=
pk

ηk

[
δkl −

ηkpl

Λ

]
. (A6)

Consider then

xT
Hηx =

N∑
k=1

N∑
l=1

xkxl
∂2IN
∂ηk∂ηl

(A7)

=
1

Λ

⎡⎣ N∑
k=1

ηkpk

N∑
l=1

pl

ηl
x2

l −
(

N∑
k=1

xkpk

)2
⎤⎦ . (A8)

From the Cauchy–Schwarz inequality we however note that

N∑
k=1

ηkpk

N∑
l=1

pl

ηl
x2

l �
(

N∑
k=1

pkxk

)2

(A9)

such that xT
Hηx � 0, i.e. the Hessian matrix is positive semi-definite. Since the Hessian matrix is positive

semi-definite we have that the mutual information IN is a convex function in η for any fixed set of
probabilities {pj}. At this point we can however use the result that if f1(x), f2(x), . . . , fN(x) are some convex
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functions in x then their point-wise maximum (i.e. sup{x}fj) is also convex in x [52]. Accordingly it follows
that CN is a convex function in η since it is given by the supremum of IN with respect to the source
probabilities.

Appendix B. Capacity of a bimodal information channel

In this section we determine the average channel capacity for scattering media for which the eigenvalues are
independent identically distributed Bernoulli random variables. As part of our derivation we will also find
the channel capacity for an information channel with K open sub-channels and N − K closed channels. Our
derivation here also serves as an illustration as to how to determine the channel capacity in the case when
some ηNi are exactly equal to unity and/or zero.

We begin by considering the mutual information of an information channel as given by equation (6) of
the main text which takes the form

IN = H(S) + ΛN

N∑
j=1

PN
j log PN

j . (B1)

To maximise IN with respect to the source probabilities pj subject to the constraint
∑N

j=1 pj = 1 we
construct the Lagrangian

L = IN + α

⎛⎝ N∑
j=1

pj − 1

⎞⎠ (B2)

where α is a Lagrange multiplier. Evaluating the derivative with respect to pk yields

∂L

∂pk
= −(1 + log pk) +

∂ΛN
∂pk

N∑
j=1

PN
j log PN

j + ΛN

N∑
j=1

(
1 + log PN

j

) ∂PN
j

∂pk
. (B3)

We now assume that ηNk = 1 or 0 for all k and that we have ordered the sub-channels such that

ηNk =

⎧⎨⎩1 for k � m

0 otherwise
(B4)

i.e. that there are m closed sub-channels and K = N − m open sub-channels. As in the main text, in this
case we define u = [ηN1 , . . . , ηNN ]. Accordingly it then follows that

∂ΛN
∂pk

=

⎧⎨⎩1 for k � m

0 otherwise
(B5)

and

∂PN
j

∂pk
=

⎧⎨⎩
[
δjk − pj/ΛN

]
/ΛN for k � m

0 otherwise
. (B6)

Upon substitution of these derivatives into equation (B3) and equating the derivative of the Lagrangian to
zero we find

1 − α =

⎧⎨⎩− log pk + log Pk for k � m

− log pk otherwise
. (B7)

Summing equation (B7) over k and enforcing the constraint
∑N

k=1 pk = 1 gives

1 − α = −
N∑

k=1

p̃Nk log p̃Nk +

m∑
k=1

p̃Nk log P̃N
k = CN (u) (B8)

where we have introduced the tilde notation to denote optimal source probabilities which are also
dependent on which alphabet N we measure. To determine the optimal probabilities we use equations (B7)
and (B8) yielding p̃Nk = exp[−CN (u)] for k > m and

m∑
k=1

p̃Nk = exp[−CN (u)]. (B9)
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Although equation (B9) does not give explicit or unique values for p̃Nk (k � m), this is of little importance
since the k � m modes are those which are output in the aggregate mode. Since individual modes cannot be
distinguished in the aggregate sub-channel, the weightings of the input modes are immaterial. It then
follows that

N∑
k=1

p̃N
k = 1 =

m∑
k=1

p̃Nk +

N∑
k=m+1

p̃Nk (B10)

= (1 − δm0)e−CN (u) + (N − m)e−CN (u) (B11)

whereby
CN (u) = log[N − m + 1 − δm0]. (B12)

Although we have assumed the specific ordering of ηNk as given by equation (B4) the derivation is
unaffected upon permutation of elements of u.

We note that thus far in our derivation we have assumed a fixed u and thus have not allowed for any
randomness in our bimodal information channel. For the case that the transmission eigenvalues are
independent identically distributed Bernoulli random variables, m is a binomial random variable with
corresponding PDF

p(m) =
N∑

j=0

(
N
j

)
η̄ j(1 − η̄)N−jδ(m − j), (B13)

where δ(· · ·) is the Dirac delta function. Note that since the transmission eigenvalues are identically
distributed η̄j = η̄ for all j. Determination of the mean capacity of a bimodal channel then follows simply as

C̄b
N =

N∑
j=0

(
N
j

)
η̄j(1 − η̄)N−j log[N − j + 1 − δj0]. (B14)

Appendix C. Central limit theorem for non-linear statistics of ηj

In reference [49] Politzer presents a formal proof that the asymptotic probability distribution function of
any linear statistic A =

∑
i μ(ηi) of the eigenvalues, here denoted ηi (i = 1, . . .N), is Gaussian. In his proof

Politzer describes how correlations between eigenvalues can be interpreted as N-body forces. In particular a
random ensemble of matrices with N-eigenvalue forces can be expressed such that the probability of a set of
eigenvalues {ηj} is proportional to ∏

i<j

∣∣ηi − ηj

∣∣ exp

[∑
k

V(ηk)

]
(C1)

where V(ηj) are effective one body external potentials chosen such that the ensemble has the same
eigenvalue density ρ(η) and two point correlation function K(η, η′) as the ensemble with the original
N-body forces. Polizter then proceeds to consider perturbation of the eigenvalue probability distribution by
an additional factor of exp[

∑
i μ(ηi)] where A =

∑
i μ(ηi) such that the eigenvalue density is modified to

ρ(η) + δρ(η). The final step of Politzer’s proof is to show that the perturbation in the eigenvalue density δρ
is linear in μ, such that the central limit theorem applied. In our case, we can follow analogous steps,
however, we now perturb the eigenvalue probability distribution of equation (C1) by a nonlinear statistic of
the form A =

∑
i hi(η), which again perturbs the eigenvalue density to ρ′(η) = ρ(η) + δρ(η). This

nonlinear perturbation corresponds to introduction of a perturbing potential with complicated N-body
forces. Following the arguments of Politzer used to justify the form of equation (C1), it is, however, possible
to replace the perturbed ensemble (when certain smoothness criteria are meet [47]) with one with
probability distribution of the form∏

i<j

∣∣ηi − ηj

∣∣ exp

[∑
k

V(ηk) + μ(ηk)

]
(C2)

whilst maintaining the form of ρ′(η) and the perturbed correlation function up to order 1/N. With this
linearised form, the proof of the CLT proceeds identically to that given in reference [49].

Appendix D. Upper informational bounds

In this section we seek to prove that equation (11) of the main text gives an upper bound no worse than
log N and similarly the analogous expression for the mutual information IN is no worse than the source
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entropy H(S). We recall equation (11) which takes the form

C̄N �
∑
u∈P

CN (u) Eη

⎡⎣∏
i∈Au

(1 − ηi)
∏
j∈Bu

ηj

⎤⎦ . (D1)

We first note that for any u the inequality CN (u) � log N holds, which in turn allows us to factor this term
out of the summation such that

C̄N � log N
∑
u∈P

Eη

⎡⎣∏
i∈Au

(1 − ηi)
∏
j∈Bu

ηj

⎤⎦ . (D2)

Exchanging the order of summation and expectation we have

C̄N � log N Eη

∑
u∈P

⎡⎣∏
i∈Au

(1 − ηi)
∏
j∈Bu

ηj

⎤⎦ . (D3)

Study of the combinatorics of the summation and product terms quickly reveals that

∑
u∈P

⎡⎣∏
i∈Au

(1 − ηi)
∏
j∈Bu

ηj

⎤⎦ = 1 (D4)

such that C̄N � log N. The derivation for IN is formally equivalent except the initial step requires the
inequality IN (u) � H(S).

Appendix E. Maximum channel capacity

In the main text we derived the ensemble specific upper bound on the mean channel capacity of a scattering
medium, as described by equation (14). Specifically we demonstrated that C̄N � C where

C =

N∑
K=0

w̃K log[K + 1 − δKN ]. (E1)

In this section we show that among all possible ensembles with a fixed mean total transmittance the
universal upper bound is given by sup{w̃K} C = C̄max

N , where C̄max
N is given by equation (16) of the main text.

Specifically we note that the maximisation of C is subject to the constraints

N∑
K=0

w̃K = 1 (E2)

N∑
K=0

(N − K)w̃K = ḡN . (E3)

where

0 � w̃K �
(

N

K

)
for all K. (E4)

Although the constraint given in equation (E4) was not explicitly given in the main text it follows by
observing that 0 � w(u) � 1, w̃K =

∑
u∈UK

w(u) and that the set UK has #UK =
(N

K

)
distinct elements.

Equations (E2) and (E3) can be used to eliminate two of the w̃K from the complete set of N. Specifically we
considering expressing w̃i and w̃i−1 in terms of the remaining w̃K , which from equations (E2) and (E3)
gives

w̃i = s2 − ḡN + (N − i + 1)(1 − s1) (E5)

w̃i−1 = ḡN − s2 + (i − N)(1 − s1) (E6)

where
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s1 =

N∑
K=1
K �=i,i−1

w̃K (E7)

s2 =

N∑
K=1
K �=i,i−1

(N − K)w̃K . (E8)

We now consider the explicit difference
Δ = C̄max

N − C. (E9)

Setting i = N − k, where k = floor[ḡN ], gives

Δ = −
N∑

K=1
K �=i,i−1

w̃K

[
log(K + 1 − δKN) + (K − i) log(i) + (i − K − 1) log(i + 1 − δiN )

]
. (E10)

From equation (E10) it is first observed that when w̃K = 0 for {K; 0 � K � N, K �= N − k, N − k − 1} the
difference between C and and C̄max

N is identically zero. Noting further that the bracketed factor in
equation (E10) is negative for all 0 � K � N and 0 � k � N − 1 (as can be easily seen by visual inspection
of the function), it follows that for any w̃K � 0 ({K; 0 � K � N, K �= N − k, N − k − 1}) the difference Δ is
positive, i.e. C � C̄max

N . Positivity of w̃K therefore ensures that C̄max
N represents the universal upper bound on

the mean channel capacity.
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