
Chapter 11
How Latitude Location on a Micro-World
Enables Real-Time Nanoparticle Sizing

Steve Arnold, D. Keng, E. Treasurer, and M. R. Foreman

Abstract We have devised a method for using the nanoparticle induced frequency
shift of whispering gallery modes (WGMs) in a microspheroid for the accurate
determination of the nanoparticle size in real time. Before the introduction of
this technique, size determination from the mode shift could only be obtained
statistically based on the assumption that the largest perturbation occurs for binding
at the equator. Determining the latitude of the binding event using two polar WGMs
results in an analytic method for size determination using a single binding event. The
analysis proceeds by incorporating the binding latitude into the Reactive Sensing
Principle (RSP), itself containing a shape dependent form factor found using the
Born approximation. By comparing this theory with experiments we find that our
theoretical approach is more accurate than point dipole theory even though the
optical size (circumference/wavelength) is considerably less than one.

11.1 Introduction

Our goal, since our last major advance reported at this school in 2013 [1], has
been lofty: invent an accurate size spectrometer for nano-size particles that works in
solution and in real-time. This is akin to a mass spectrometer that works in vacuum,
and has acted as an enabler in biochemical discovery. Label-free sensors with these
capabilities could identify whole viruses and exosomes not only by using bound
antibodies [2, 3], but also through their size. Furthermore, a single particle technique
with these capabilities could detect binding events in real-time and quantitatively
test the efficacy of antibodies.
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Since Arnold et al. first proposed microcavity based single nanoparticle detection
and sizing in 2003, using the perturbative frequency/wavelength shift of an optical
Whispering Gallery Mode (WGM), [4] there have been a slew of papers on the
subject [5]. The mechanism invoked in Ref. [4], known as the Reactive Sensing
Principle (RSP) [6] states that “the perturbation in a resonator’s photonic energy
upon particle binding is equal to the energy required for the microcavity’s reactive
(evanescent) field to polarize the particle”. In 2010 Zhu et al. established a method
for determining the size of a nanoparticle in one event by using an optical micro-
resonator requiring a very high Q WGM resonator (Q �107–108) and a combination
of a reactive splitting 2G, and an increase in linewidth �� associated with light
scattering [7]. The splitting is caused by lifting the clockwise-counterclockwise
degeneracy associated with orbiting photons within WGMs. Whereas the splitting
is proportional to the polarizability ˛ of the adsorbing nanoparticle, which is in turn
proportional to the particle volume, the increase in linewidth is proportional to ˛2,
so that the ratio ��/(2G) can be used to obtain the polarizability, and from that the
particle size/mass. The measurable splitting vanishes however, if it is smaller than
the cavity linewidth, thereby setting a lower limit for the detectable nanoparticle
size [8]. The resulting “degenerate” mode still shifts, but it is only possible to
obtain the polarizability through a statistical approach. In particular, the largest
wavelength shift in a distribution of many events can be analytically related to the
particle size, since the maximum shift of the lowest order polar mode corresponds
to binding directly at the equator [4]. Unfortunately because of the statistical nature
of this approach one cannot be certain that the largest event in the distribution
corresponds to a particle at the equator. Consequently the size obtained is uncertain
and many events are needed to generate the distribution [9]. Fortunately, we found
an alternative approach that avoids these difficulties [10]. Explaining how it works
and its ramifications is the subject of this chapter.

11.2 The Way Forward

As mentioned above, the need for measurements of statistical ensembles to evaluate
the particle size from the frequency/wavelength shift derives from the uncertainty in
the binding particle’s location. Accordingly, the only distinguishing feature in the
ensemble is the largest shift, which occurs for a nanoparticle binding at the equator.
Our new approach avoids these difficulties by determining where the particle binds.
Because of the rotational symmetry associated with a spheroid, only determination
of particle’s latitude is necessary. Once the latitude is determined, the RSP can
then be invoked for size determination. The current idea is fully reactive, does
not require mode splitting, and therefore can be applied in the weak coupling
limit where the interaction G is considerably smaller than the linewidth, � , and
the Q is modest (<106). Nevertheless, like mode splitting it involves analysis of
the ratio of shifts from two different resonances in the same microcavity and is
therefore immune to long term temperature fluctuations. Specifically, this approach
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involves the excitation of two resonances having the same angular momentum
quantum number l but different m quantum numbers (�l < m < l) in a cavity for
which a nanoparticle induced wavelength shift is much smaller than the linewidth
(i.e. weak coupling). Although m is referred to as the magnetic quantum number
in atomic physics, when considering different m modes within a microresonator
for a given l we will use the term polar modes. To understand the principle of the
latitude locator we must examine the shape of the WGM intensity of different polar
modes. There are many such states that are characterized by l � m C 1 intensity
peaks along the polar direction. In a sphere these m states are degenerate for a
given angular momentum l, but in a spheroid this degeneracy is lifted and the states
separate spectrally. The first of these (i.e. shortest wavelength) is an equatorial mode
for which m D l, thereby producing one intensity peak centered about the equator
(Fig. 11.1). The next with m D l � 1, has two peaks, one to the North and the other
to the South of the equator (Fig. 11.1). It is important to realize that the two modes
depicted in Fig. 11.1 can be excited sequentially within the same slightly prolate
microcavity by a fiber positioned slightly above or below the equator and directed
along a line perpendicular to the symmetry axis of the spheroid. In what follows
we will show that the ratio of the resonance wavelength shifts of each of these
modes provides a measure of the nanoparticle’s absolute latitude, from which its
polarizability and size/mass may be estimated one event at a time (i.e. real time).

Fig. 11.1 Polar mode intensities in a single slightly prolate micro-spheroid excited sequentially
during a spectral laser scan by a guided wave in a tapered fiber positioned just below the equator,
and its corresponding transmission spectrum. The m D l � 1 mode on the right has a slightly
longer resonance wavelength than the m D l mode on the left. A nanoparticle adsorbed north of
the equator (orange dot) has a larger overlap with the intensity of the m D l � 1 mode on the right
and consequently this mode shifts (red curve) to a greater extent. The ratio of the two shifts for the
same microcavity yields the nanoparticle’s latitude, from which its polarizability and size/mass are
calculated using the Reactive Sensing Principle (RSP)
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11.3 Theoretical Approach

To start the description of the polar mode based locator we first update the
wavelength shift theory to include differing polar modes. For this purpose we adopt
the symbol ��l,m to describe the wavelength shift of a mode having an angular
momentum number l, and polar number m. In what follows we will show that the
latitude angle for particle binding is easily obtained from the ratio of two wavelength
shifts, ��l;l�1=��l;l.

To understand the importance of polar modes in nanoparticle characterization
one simply has to return to the basic principle of microcavity reactive detection,
the reactive sensing principle (RSP). To reiterate the RSP simply states that “the
perturbation in a resonator’s photonic energy upon particle binding is equal to
the energy required for the microcavity’s reactive (evanescent) field to polarize
the particle” [4]. The principle applies to ultra-small particles such as proteins for
which the radius a is much less than the characteristic evanescent intensity length
L (a < < L), and to extended particles (a � L). On this basis, the shift in resonance
wavelength�� is the wavelength � times the ratio of the energy required to polarize
the nanoparticle to the energy in the cavity. In a dipole approximation (a < < L) the
shift in wavelength is given by [4]
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where E0(rp) is the evanescent field strength at the position of the dipole rp, ˛ex is
the polarizability of the nanoparticle in excess of it environment (i.e. medium), and
"(rc) is the permittivity of the cavity at position rc. When applied to a homogeneous
microsphere for m � l > > 1 (i.e. polar modes whose mode energy is concentrated
close to the equator), for a nanoparticle of radius a adsorbing on the surface, Eq. 11.1
becomes
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where ˛ D ˛ex="0 is the “geometric” polarizability that is proportional to the
volume of the nanoparticle (˛ D D˛a3), Re is the microsphere equatorial radius, L
is the characteristic evanescent intensity length obtained from Mie theory, Yl, m(�p)
is the spherical harmonic evaluated at the latitude �p of the bound particle (the
azimuthal dependence of the spherical harmonic is omitted since the usual eim�

drops out when considering jYl, mj), the factor g can correct for a displacement of
the point dipole from the surface (g1), or for the more realistic case of a distributed
polarization energy density (g2), ns, ne and np are the refractive indices of the
microsphere, environment and nanoparticle respectively, and finally the constant
D˛ D 4�ne
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The simplest choice of the g factor, g1, accounts for the displacement of the center
of the dipole from the surface by a distance a. Since the evanescent intensity in the
numerator of Eq. 11.1 fits well to a single exponential decay with a characteristic
length L, [11] the simplest g factor is one that evaluates the evanescent intensity at
the nanoparticle’s center; [6]

g1 D e�z (11.3)

where z D a/L. Alternatively we can use g2, termed a form factor since it accounts
for the shape of the nanoparticle, which can be found from making the Born
approximation for scattering from a sphere [12]. Specifically, g2 is the volume
averaged surface normalized evanescent intensity within the nanoparticle. For a
spherical nanoparticle, integration over its shape gives
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This form factor recognizes that the hemisphere of the nanoparticle closest to the
microsphere surface will receive more polarization energy than the hemisphere
furthest from the surface. Below z � 1, g1 and g2 are approximately equal and
have the simple limiting value of g ' 1 for a < < L, therefore ensuring asymptotic
consistency with the original result [4] (i.e. both describe the simple point dipole
at the surface of the microcavity for a < < L). The factor g1 is expected to be valid
so long as the ratio Xn D 2 a/(œ/np) < 1, where œ is the free-space wavelength [13].
The limits for use of the form factor g2 have become controversial, [13] although
this paper will provide a test of its use in interpreting experimental data for z values
both smaller and larger than 1. Equation 11.2 is the key to our latitude locator.

Consider the ratio of wavelength shifts of the m D l � 1 to the m D l modes
at a latitude �p; ��l;l�1

�
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comparison to the wavelength and l > > 1, it follows from Eq. 11.2 that
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As one can see the right hand side of Eq. 11.5 only depends on the latitude �p of the
adsorbing particle, and consequently by placing experimental wavelength shift data
on the left, this equation gives the latitude of the adsorbed nanoparticle independent
of its physical properties, those of the resonator, or any refractive indices. Once �p

is determined, Eq. 11.2 can be used to calculate the size of the nanoparticle as well
as the polarizability.

Our simple latitude locator equation (Eq. 11.5) can be further simplified by
utilizing a mathematical identity which connects the ratio of spherical harmonics
to the tangent of the latitude angle,
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Combining Eq. 11.4 with Eq. 11.5 gives the absolute latitude of the particle,

ˇ̌
�p

ˇ̌
Š tan�1

s
1

2l

��l;l�1

��l;l
(11.7)

Once j�pj is found, the size a of the nanoparticle can be obtained by re-expressing
Eq. 11.2 as
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The solution to Eq. 11.8 is particularly simple for a < < L since the form factor
g ' 1 in this limit, and one gets a closed form algebraic solution. For ultra-small
particles displaced from the surface, or larger particles for which the evanescent
field varies significantly over the dielectric body, g can take an analytical form (e.g.
g1 or g2), and the size can be obtained numerically from Eq. 11.8. Whether the
nanoparticle is north or south of the equator is irrelevant, since the square modulus
of the spherical harmonic in the denominator of Eq. 11.8 is an even function with
respect to the latitude.

11.4 Experimental Approach

To test our micro-global latitude locator idea we fabricated micro-spheroids by using
CO2 laser melting at the end of a tapered silica optical fiber (inset, Fig. 11.2). Shape
analysis of the images revealed that our resonators were slightly prolate [distortion

D
�
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=
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1=3
< 0:03, where Rp is the polar radius and Re is that of

the equator]. These silica micro-spheroids were then installed into our homemade
microfluidic system, [2, 14, 15] where they were coupled to a tapered optical fiber.
In the inset the fiber is below the equator of the spheroid.

A typical under-coupled spectrum taken through the coupling fiber is shown in
Fig. 11.2. All of the resonances were excited with a 1063 nm tunable DFB laser
polarized along a meridian [Transverse Electric (TE) polarization] by using an
integrated system provided by MP3Laser.com. The laser was current tuned with
a saw tooth wave that accounts for the rising backbone of the spectrum; increasing
the drive current tunes the laser to greater wavelength but also increases its output
power. It should be noted that the resonance dip on the left has no neighbor at
shorter wavelength. This is the signature of the m D l equatorial mode of a prolate
spheroid; the m D l mode has the shortest wavelength, since the equator has the
smallest circumference [16]. To the right of this mode (longer wavelength) is the
m D l � 1 mode which is narrower with a smaller dip. Note that the m D l � 2 mode
is of similar depth to the m D l mode, while the m D l � 3 mode (at yet longer
wavelength) looks similar in depth to the m D l � 1 mode. This sequence of deep-
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Fig. 11.2 Spectrum of a slightly prolate microcavity immersed in 30 mM NaCl solution and
excited by tapered fiber coupling just below the equator as seen in the inset. The equatorial radius
was 41 microns. From Mie theory l D 340 with all modes having TE polarization. The DFB laser
was scanned with a saw tooth drive having a period of 100 msec

shallow-deep-shallow dips in Fig. 11.2 is a consequence of the overlap between the
fiber field and the polar symmetries of the WGMs; the coupling constant requires
performing volume integration over the product of the optical fiber field with the
WGM field [17]. Whereas the m D l mode is symmetric in latitude about the equator
as is the fiber field, the m D l � 1 mode is antisymmetric. Exciting the antisymmetric
WGM mode requires that the centerline of the exciting fiber be slightly above or
below the equator due to the greater modal overlap this gives. Before performing
nanoparticle binding experiments the fiber contacted the cavity which reduced
noise due to fiber vibration, but caused the resonances to be both red shifted and
broadened due to over-coupling. All the modes were identified as being of first radial
order.

The latitude locator idea was tested by using nanoparticles for which Xn < 1.
For convenience polystyrene beads were chosen with a manufactured size of hami˙

	m D 96.7 ˙ 4.5 nm [Polysciences], for which Xn D 0.90 at 1063 nm. These particles
were injected into our microfluidic system at a 175 fM concentration in the presence
of a resonator similar to that depicted in Fig. 11.2, but with an equatorial radius of
40.5 �m. The solution had a 100 mM NaCl concentration to promote binding to the
silica surface by decreasing the Debye length associated with ionized silanol groups
[6]. The fiber is placed in contact with the resonator to reduce mechanical vibration
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Table 11.1 Data (2nd and 3rd column) taken for polystyrene particles with a size of hami ˙
	m D 96.7 ˙ 4.5 nm, as determined by the manufacturer. The mean size found using our latitude
locator scheme differs from hami by 1.3 % when using g1, and by 0.4 % when using g2. The
common parameters used to calculate columns 5 and 6 are R D 40.5 �m, l D 336, L D 194.4,
np D 1.5718, ns D 1.449 and ne D 1.326

Event
��336;336

.fm/

��336;335

.fm/

ˇ̌
�p

ˇ̌
.deg/

Eq. 11.7
arsp.nm/
Eq. 11.8, g1

arsp.nm/
Eq. 11.8, g2

1. 90 s 100 58 1.69 103.9 102.8
2. 130 s 120 18 0.86 102.6 101.4
3. 485 s 37 74 3.13 92.7 91.9
4. 1358 s 25 85 4.08 104.7 103.6
5. 1612 s 38 66 2.92 88.9 88.2
6. 2601 s 63 68 2.30 95.4 94.5
7. 4038 s 45 75 2.86 93.8 92.9
8. 4412 s 110 51 1.51 105.5 104.3
9. 4917 s 64 83 2.52 100.3 99.2
10. 5225 s 64 55 2.05 91.9 91.1
11. 6863 s 62 79 2.50 98.6 97.6
12. 7182 s 58 73 2.48 95.7 94.8
13. 7310 s 73 77 2.27 100.7 99.7
Mean 98.0 97.1
< arsp > � < am > 1.3 0.4

noise. This results in a red shift and broadening of the resonances. Upon coupling
the m D l and m D l � 1 resonances had Qs of 5 	 105 and 2 	 105, respectively.

The second and third columns of Table 11.1 show the experimental shifts for
13 detected events, measured over a period in excess of 2 h, while the fourth
column provides the latitude angle found from Eq. 11.7. The fifth and sixth columns
provide the nanoparticle size determined from Eq. 11.8 using form factors g1 or g2,
respectively. As one can see the mean radius determined using the RSP for both g1

(98.0 nm) and g2 (97.1 nm) are near the manufacturer’s specified size, although the
mean radius using g2 is considerably closer to the manufacturer’s value of 96.7 nm.

The standard deviation of all the particle results determined using Eq. 11.8
(5.0 nm) is very close to the manufacturer’s standard deviation of 4.5 nm, implying
that our standard deviation is the result of particle size variation, and not the
computational approach.

11.5 Concluding Remarks

For the data in Table 11.1 Xn D 0.9, which easily qualifies for testing our sizing
technique based on g1, [13] however it appears that g2 provides better agreement
with our data. The mean size arrived at using our global positioning scheme differs
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from hami by deviations of about C1.3 % using g1, and by C 0.4 % using g2. It is
not difficult to understand the superiority of g2 over g1.

Reference [13] suggests that the intensity in the numerator of Eq. 11.1 should be
evaluated at the center of the nanoparticle so long as Xn < 1. The upper limit in size
consistent with this inequality is amax Dœ/(2 np), which for polystyrene particles at
1063 nm is about 108 nm. For the microcavity used in Table 11.1, L D 194.4 nm, so
the intensity at the furthest part of the bound nanoparticle is only 33 % of what it is
at the microcavity surface. This is expected to lead to a decidedly inhomogeneous
energy density within the particle. In other words the centroid of energy density
within the particle cannot be at the center as it would be for a uniform intensity;
considering the current high precision of our measurements, a point dipole
model is less reasonable than the shape dependent Born approximation even
for Xn < 1.

To further support our conclusion a COMSOL simulation was performed for
microcavity and nanoparticle parameters similar to those in Table 11.1. Figure 11.3
shows a typical calculation. The intensity within the particle falls off by a factor of
2.87 from the closest point to the microcavity to the furthest point even though Xn

<1. This image allows us to calculate the total polarization energy of the particle.
The results are consistent with the RSP theory for a non-uniform polarization
density, [18] and with the use of the form factor g2 [19].

Whereas the factor g1 requires that the particle be viewed as a displaced
dipole having Xn < 1, [13] the limitation on the Born approximation as applied to
polarization by an transverse electric (TE) evanescent field is not as apparent. To test
this we increased the particle size so that Xn reached 2.1, by performing experiments
on polystyrene particles having mean radii of 178 nm and 228 nm [19]. Surprisingly,
when using g2 the results were nearly as good as those for the smaller particles in
Table 11.1; with the measured mean radii deviating from the manufacturer specified
means of 178 nm and 228 nm by C0.5 % and C0.8 % respectively. By comparison
the displaced point dipole factor g1 does not compare well as expected; the mean
radii calculated with g1 deviate away from the manufacturer specified means of
178 nm and 228 nm by C3.6 % and C8.9 % respectively; �10 	 the deviation
encountered by using g2.

We have just begun our work on constructing high precision nanoparticle size
measurements in real time. One thing which is quite clear from our measurements
and simulations is that the dipole theory even in a “first principled” form [13] is not
sufficient, and that perturbation theory can prove more accurate because it allows
for variation in the internal field.

At its inception we called the technique to locate the nanoparticle’s binding site,
a micro-global positioning system (WGM-gps) [10]. Ordinarily a global positioning
system needs to report latitude, longitude and altitude, however it would seem from
Table 11.1 that we only located the latitude. In point of fact by identifying the
particle’s size we have determined the “altitude” to its center at its landing site.
Consequently a pre-binding record of the frequency shift by a single particle can
determine its “altitude” history before and at the time of landing. In that sense
we can have both the latitude and altitude. Although not necessary for particle
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Fig. 11.3 COMSOL calculation showing the internal field within a 96.7 nm radius polystyrene
particle located at the equator of a spheroidal resonator and bathed in a TE field of a 1st order
WGM with l D 340. The position of the vertical white line closest to the nanoparticle represents
the surface of the microcavity. The intensity within the particle falls off by a factor of 2.87 from
the closest point to the microcavity to the furthest point even though Xn <1

sizing, the determination of longitude would complete our WGM-gps sensor leading
to massive multiplexing by comparison to the manner in which WGM sensors
are currently used (i.e. one assay per resonator). This should revolutionize sensor
technology on our micro-world, just as it revolutionized navigation on the Earth
centuries ago [19].
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