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In this Letter we propose the use of whispering gallery mode resonance tracking as a label-free optical
means to monitor diffusion kinetics in glassy polymer microspheres. Approximate solutions to the
governing diffusion equations are derived for the case of slow relaxation and small Stefan number.
Transduction of physical changes in the polymer, including formation of a rubbery layer, swelling, and
dissolution, into detectable resonance shifts are described using a perturbative approach. Concrete
examples of poly(methyl methacrylate) and polystyrene spheres in water are considered.
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Diffusion in polymers is a complex process, the under-
standing of which can bring great benefit to, for example,
design of polymer membranes, microfluidics, fuel cells,
controlled drug delivery systems, and sensors [I-7].
Fundamentally, many physical principles can influence
the diffusion kinetics, such that differing diffusion regimes
have been observed ranging from so-called Fickian (case I)
diffusion, in which the rate of penetrant diffusion dominates
the kinetics, through anomalous diffusion, to non-Fickian
(case II) diffusion governed by polymer relaxation [8,9].
Consequently, both theoretical modeling [10,11] and devel-
opment of associated experimental techniques, such as
Fourier transform infrared attenuated total reflection, nuclear
magnetic resonance spectroscopy, fluorescence imaging,
laser interferometry, and gravimetry [12-16], have seen
long-standing research interest. Comprehensive understand-
ing and control of diffusion kinetics, however, still remains
a challenge, such that further means by which to monitor
the diffusion process precisely are still of great importance.

In this work we propose a novel label-free method of
monitoring diffusion in glassy polymers, e.g., polyethylene
terephthalate (PET), based on tracking of whispering gallery
mode (WGM) resonances in a polymer microsphere. While
the high Q factors of these surface-type modes provide a
sensitive method of studying diffusion kinetics or sensing of
volatiles, this work also provides a, hitherto lacking, quanti-
tative description of the degradation and swelling processes
affecting polymer biosensors, which are invariably used in
aqueous environments [5,7]. We primarily concern ourselves
with polymer-penetrant systems suffering relatively small
physical changes from penetrant diffusion, as may result
from, for example, low penetrant solubility, slow dissolution
rates, and small molar volume. Environmental plastic pollu-
tants represent an important class of such systems, the study
of which can profit from the high sensitivity afforded
by WGM tracking. We begin this Letter by introducing
the diffusion model used, which serves to demonstrate
the pertinent effects of diffusion on WGMs. We derive
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approximate asymptotic solutions that further allow physical
insights before presenting the electromagnetic model des-
cribing transduction of physical changes in the polymer
into optically detectable signals. Perturbative results for
induced resonance shifts are also given. Distinct stages in
the diffusion kinetics are finally identified and discussed.

When a dry glassy polymer microsphere is immersed into
a solvent [17], a complex mixture of diffusion, polymer
swelling, and erosion can occur (see Fig. 1). Initially, as
the solvent begins to diffuse into the outermost regions
of a dry polymer, a phase transition is induced whereby
glassy polymer transforms into a rubbery state as a result of
plasticization and polymer relaxation [8]. Over time the
boundary between the glassy and rubbery regions advances
towards the center of the sphere. Similarities with a classical
one-phase Stefan problem are manifest [18]; however, the
polymer network in the rubbery layer simultaneously expands
so as to accommodate solute molecules, resulting in a swelling
of the sphere. Inclusion of the second moving boundary,
therefore, requires extension of the Stefan solution. Once
polymer entanglement becomes suitably small, the sphere can
ultimately undergo surface dissolution such that the outer
surface begins to retreat and the microsphere shrinks [19].

To model these various aspects of solvent diffusion, we
extend the models of Refs. [20-22]. We begin by adopting
Fick’s law of diffusion whereby
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FIG. 1 (color online). Schematic of penetrant dynamics upon
introduction of a glassy polymer microsphere into a solvent bath.
Arrows depict direction of movement of the polymer interfaces.
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where U = U(R, t) is the penetrant molar concentration, R
and ¢ are the radial and time coordinates, and D = D [D ]
for R{(t) KR < R,(t) [0 <R < R((t)] is the diffusion
coefficient of the penetrant in the rubbery [glassy] region.
Note that R;(0) = R,(0) = R,. Since the glass-rubber
interface is generally sharp, the phase transition is modeled
as a threshold process occurring at a penetrant concen-
tration of U* [8]. Assuming that the polymer sphere is
immersed in a penetrant bath, we can assert U = U, > U*
for R = R,(?), where U, is the solubility of the penetrant
in the polymer; i.e., a condition of local equilibrium holds.
We further assume that the velocity of the glass-rubber
interface depends on the excess penetrant concentration at
the interface above the threshold value [23,24], i.e.,

%:—K(U—U*)V at R = R,(1), (2)
where the kinetic parameter K and nonlinear coefficient y
are phenomenological constants. Introduction of the kinetic
parameter K regularizes unphysical singularities in the
classical one-phase Stefan problem arising when the glass-
rubber interface reaches the center of the sphere [25]. For
simplicity, we henceforth assume y = 1. Nonlinear dynam-
ics have been investigated in Ref. [25].
Mass conservation at the inner interface implies
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with 6 — 0 [26]. Typically, D, < D [9,27] such that the
so-called Fickian precursor penetrating into the glassy
region exhibits a rapid falloff with a decay length L(D,).
Documented values of D, are, however, rare. In lieu of
adopting an arbitrary value of D,, we instead make an
adiabatic approximation [11] allowing diffusion in the
glassy and rubbery regions to be decoupled. When
L < R, the solvent concentration in the core can be
approximated as U ~ U* exp[—(R — R;)D,'dR, /d1] [11],
which can then be substituted into Eq. (3) to eliminate D,
[28]. In contrast, when L 2 R, size-dependent diffusion
kinetics can result [39] and the assumption of a sharp
glass-rubber interface no longer holds since the penetrant
concentration quickly reaches U* throughout the core.
Therefore, we assume L < R(; however, note that this
restriction poses no difficulty since WGMs are also sup-
ported in larger (e.g., macroscopic) spheres. Errors intro-
duced through use of an approximate solution are largest
when R (7) < L, which proves unimportant in our WGM
tracking scheme (see below).

Penetrant mass that diffuses into the polymer has a
finite volume and hence causes the sphere to expand. The
penetrant flux across the outer boundary follows from

modifying Fick’s first law to account for the moving
boundary viz. J = 4zR3(DOU/OR + UydR,/dt). Further
considering surface erosion, the total rate of change of the
volume V is given by dV/dt = vJ — 4zR5K ,, where U is
the penetrant molar volume and K is the surface normal-
ized erosion coefficient. Hence, we arrive at the final
boundary condition

dR ou dR
2= OD—— + Uy —=

— - K.
dt OR

i s at R=R,(1). (4)

No analytic solution to Egs. (1)—(4) is known and hence
they must be solved numerically. With appropriate scaling
[28] and introduction of the parameters u=D(Uy—U*)""/
(KRy) and 6 = U*/(Uy — U*), known as the nondimen-
sional kinetic parameter and Stefan number, respectively,
Egs. (1)-(4) can be nondimensionalized [28] to facilitate
such computations. Importantly, it should be noted that after
atimet = i, the glass-rubber interface reaches the center of
the sphere. Instead of Egs. (2) and (3), a zero flux condition
must thus be enforced at R = 0 for 7 > 7, [28].

To illustrate the behavior of the above equations, we
consider a poly(methyl methacrylate) (PMMA) and a
polystyrene (PS) microsphere of 50 um radius immersed
in water. Anomalous diffusion behavior has been reported
in both systems [40,41]. Dissolution rates are negligible
in these systems; however, for simulation purposes, it is
necessary to input the associated values of D, U*, U, and
K (see Table I). Threshold concentrations were determined
using the Fujita-Kishimoto method [42] whereby the
threshold mass fraction is given by C* = a;(T,—T)/p,
where Ty (T) is the glass transition (ambient) temperature
of the polymer, # is a characteristic polymer-penetrant
parameter, and a; is the polymer free-volume constant [28].
Values of K were estimated using published experimental
values of the penetrant front velocity or saturation time
[43,44]. Numerical solution of the nondimensionalized
differential equations was performed by applying a
front-fixing transformation before subsequent use of the
method of lines and standard finite difference techniques
[22,26,28]. Small time asymptotic solutions, valid for
7= O(u?), where 1 = Dt/R% is the scaled time, were used
to seed the solution [28]. Such asymptotic solutions also
allow us to approximately express the condition L < R,
as uD,/D < 1. Figure 2 shows the resulting interface
positions as a function of time (solid lines) for both the

TABLE I. Simulation parameters (see also Ref. [28]).
PMMA-water  PS-water
D (cm?s7h) 335x 107 1.7x 1077
U, (molm™3) 986.392 466.079
U* (molm™) 115.320 107.815
K (m*s~!'mol™!) 2.646 x 1071 1.597 x 10!
Stefan number o 0.1324 0.3009
Nondimensional kinetic parameter u 0.2906 59.4204
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FIG. 2 (color online). Temporal evolution of microsphere sur-
face (top) and glass-rubber interface (bottom) for PMMA-water
(blue lines) and PS-water (green lines) polymer-penetrant systems.

PMMA- and PS-water system, along with the small time
asymptotic solutions (dashed lines). A number of points of
interest are apparent. Firstly, the higher solubility of water
in PMMA gives rise to a larger swelling of PMMA
microspheres. The total fractional change in R,, however,
represents only a fraction of a percent, or equivalently 1/4,
assuming an optical wavelength of 4~ 1210 nm. Swelling
of such a small magnitude can nevertheless transduce large
resonance shifts as will be seen below. Secondly, we note
that the entire diffusion process is slower for the PS system,
despite a higher diffusion coefficient. Specifically, satura-
tion of the PMMA (PS) microsphere takes ~5 (146) min.
Primarily, this behavior results from the slower rate at
which PS relaxes, as reflected by the larger value of u.
Under the conditions ¢ < 1 and ¢ > 1, it is possible to find
approximate expressions for the evolution of the interfaces.
Derivation is given in the Supplemental Material [28],
whence we find

¢ = {(5—4p )+ (1 = 2p )M, + (1 + p)arccoty/j

+ (1 + p) arctan[(1 = 2p,)M7" /ul}/8, ()
6v [r 3

S=1+ / l dr, 6

P v=1Jo u+2p; —2p7 + M, ©)

where M = i +4u(p, —p7)]"* and p; = p;(7) =R;(1) /Ry
for j = 1,2. These solutions are shown in Fig. 2 by the
dotted lines. Near perfect agreement is seen for the PS case.
Discrepancies for the PMMA microsphere occur since
p = O(1) and are largest at times 7 ~ 7. Specifically, a
diminished swelling and faster advance of the glass-rubber
interface are predicted, the former of which is most
significant in determining shifts of WGM resonances
(see below). Noting that saturation occurs when
R, =0, the saturation time follows from Eq. (5) as
7p & [Bu+ /u(1 + p)arccot,/u] /4, in good agreement

with numerical results. We further note the resulting R}
scaling of 7;.

Whispering gallery modes supported in polymer micro-
spheres are highly sensitive to the local environment and
the resonator radius R,. For homogeneous microspheres,
the resonance frequency @ can be found using the asymp-
totic approximation [45]

nwR,y/c~v+2713¢ 012+ 0(1), (7)

where [ is the WGM order, v = [ + 1/2, ¢ is the speed of
light, g is the radial order, ¢, denotes the gth zero of the
Airy function Ai(—z), and n is the refractive index of the
microsphere. Diffusion of solvent into the microsphere,
however, produces a radial inhomogeneity in the refractive
index profile, thus invalidating Eq. (7). For simplicity, we
make an effective medium approximation, such that the
refractive index of the rubbery layer is n, = n,n, +1n,n,,
where 77, and 7, are the volume fraction of the solvent
(of refractive index n) and polymer (n,), respectively.
An effective refractive index accounting for the Fickian
precursor can be used in place of n,; however, given that
the difference is small, we neglect this effect. Accordingly,
resonant frequencies can be found via numerical root
finding of the associated resonance condition [46]. To
help reduce the associated numerical complexity, we also
present a perturbative approach. Formulas exist in the
literature for thin layers of arbitrary refractive index differ-
ence [47]; however, here we develop expressions valid for
layers of arbitrary thickness with small refractive index
differences. Derivation is again given in the Supplemental
Material [28]; however, we find that the shift in resonance
frequency, upon introduction of a layer of refractive index
n,, from that of a homogeneous sphere of the same outer
radius and with refractive index n

ps 18

Sw eol(l+1) o
where v = TE or TM denotes the polarization of the WGM,
QE = w?u3, Q™ =1, ¢, (1) is the permittivity (per-
meability) of free space, and Uj, are given in Ref. [48].
For TE modes, we have Z1F = F9(R,) — F3(R,), where

fg(x> _ x2j1<1p)j1(Z,) n jl+1(zp) —n

(np =)k |7 Ji(z,)

k=2n/A, z; =n;kx, and j(z) denotes the spherical
Bessel function. See the Supplemental Material [28] for
the TM case [28]. Figure 3 shows the evolution of TE
polarized WGMs of differing radial order in a PS micro-
sphere, initially at A= 1210 nm, found using Eq. (8) and
numerical root finding, whereby good agreement is seen.
Physically, three distinct regimes can be identified
(shown for ¢ = 1), as determined by the thickness of the
rubbery layer T, relative to the radial extent AR;,/R, =
(3m)*3/2[(q — 1/4)/(n,kRy)|*®> of the WGM [45].

jl+1(zr)
' jl(zr) ' (9)
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FIG. 3 (color online). Temporal evolution of resonance wave-
length shift 51 for PS-water system for (7, ¢) = (396, 1), (386,2),
and (377,3) fundamental WGMSs. Blue and red dashed lines
depict the predictions of Egs. (11) and (12), respectively, for
g = 1. Inset: Radial extent of WGMs in a 50 ym PS microsphere.

In each case, differing processes govern the observed
resonance shift, as we now discuss in turn.

Regime I: Effective refractive index phase T < AR;;.—
Initially, the diffusing penetrant is limited to a thin layer
near the resonator surface and the glass-rubber interface
moves across the mode volume, thereby inducing a
change in the refractive index An seen by the WGM.
Simultaneously, the polymer sphere swells by AR such that
the total resonance shift results from both effects. The
relative importance of each can be estimated by considering
a rubbery layer of thickness AR, and volume V. In this
scenario, we can use Eq. (7) to estimate the net shift as
Aw/w =~ —An/n, — AR/R,. We consider the limiting case
of a saturated layer. Accordingly, the volume of solvent in
the layer is given by V, = V,0U,. Noting then that the
associated volume fractions of solvent (polymer) are , =
Uy (1, = 1 =0Uy), we find An=Uy(n, —n,). Given
n, > ng, an increase in resonant frequency, i.e., a blueshift,
results. Solvent ingress, however, also causes an increase in
the microsphere volume of V, such that AR % DU(AR,,
hence inducing a redshift of the WGM. The relative
magnitude of the opposing shifts is thus approximately

N (37)*°n, [q—1/412
2(n, — ny) [ n,koRy ’

Given the R, 23 scaling, blueshifts evidently dominate in
larger microspheres. For the PMMA and PS spheres
considered here, a unity ratio corresponds to Ry~ 10
and 5 um, respectively, for a A~ 1210 nm, ¢ = 1 mode,
such that only low [ lossy modes are supported. Using the
constraint nwR = const, we can more accurately estimate
the maximum resonance shift in regime 1 as

A _
‘ a)|An—0 (10)

Aw|AR:O

A(U] - n,,(] —l_/UoAqu)
w n, +oUy(ng—n,)

~1. (11)

The dashed blue line in Fig. 3 depicts the maximum shift
predicted by Eq. (11). Slight overestimation arises from
assumption of a saturated layer. For higher order radial
modes, the wavelength shift oscillates as the glass-rubber
interface advances across each successive field maxima.
Maximum blueshifts are also smaller.

Regime 2: Swelling phase T > AR,;,—Once the rub-
bery layer becomes much thicker than the radial extent of
the WGM, the swelling of the microsphere dominates the
induced resonance shift, since the polymer within the
modal volume is essentially saturated. Only redshifts are
hence observed. The maximum redshift can be estimated
similarly to above, yielding

Aw,  n,(1-0Uy)"3
w  n,+oUy(n,—n,)

~1. (12)

Without the competing blueshifts arising from refractive
index changes, the sensitivity of the WGM resonance to
polymer swelling is maximum during this stage of diffusion.
Observing that the minimum resolvable shift of the WGM
is a small fraction f (typically =~ 0.01) of the resonance
linewidth [49,50], it follows that the minimum observable
fractional change in the microsphere radius ~fQ~!.
Neglecting additional absorption from the penetrant, typical
absorption limited Q factors of ~1.7 x 10’ are obtainable for
PMMA and PS microspheres (Q, = 1,k/a, where ais the
polymer absorption coefficient [28,51]). In turn, this implies
that for a 50 ym sphere, the minimum additional penetrant
volume AV, required to induce a resolvable resonance
shift is ~3fV Q™! ~ 90 aL, representing a high sensitivity
for detecting solvent penetration.

Regime 3: Dissolution phase T =~ R,, © 2 t;—In the
final stage of the diffusion process, the polymer becomes
saturated with penetrant, such that swelling ceases.
Dissolution, however, results in shrinkage of the micro-
sphere and a blueshift of the WGM. Noting that once
saturated OU/OR = On, /0t = 0, Egs. (4) and (7) give

1da)~ KS/RO
wdt  1-0Uy—K,t/Ry

(13)

Since K;/Ry <1 and pU, < 1, it follows that w(7)~
woKt/R, irrespective of which mode is tracked. Briefly
considering dissolution of PMMA in methyl isobutyl
ketone (K, ~0.091 ym/ min at 20°C [52]), we note that
the resonance wavelength shifts at a rate of dA/dr~
—3.34 pm/s. Better solvents give rise to more rapid evolution
of the WGM; however, this can become experimentally
difficult to observe. Use of larger spheres can mitigate this
issue. Bulk dissolution of the polymer also produces similar
behavior, since in this case the refractive index of the resonator
changes linearly with time, instead of the resonator size.

In summary, this Letter proposes monitoring diffusion
kinetics in polymers by means of tracking WGMs in polymer
microspheres upon immersion in a penetrant bath. Similar
phenomena can also be exploited in, e.g., cylindrical
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resonators. Practically, we note that experimental realization
requires a good control of ambient temperature so as to avoid
associated resonance drifts. Initial environmental conditions
must also be controlled, since ambient moisture may result in
preliminary formation of a rubbery layer extending beyond
the WGM mode, therefore rendering the first stage of
diffusion unobservable. Nevertheless, high sensitivity real
time monitoring of polymer swelling can be simply achieved
since this process occurs over longer time scales and
regardless of initial layer formation. Weak polymer dissolu-
tion can also be easily observed using WGM tracking, to such
an extent that monitoring of slow degradation at rates on the
order of ym/yr, as are relevant for degradation of environ-
mental plastic pollutants, e.g., PET and PS, is conceivable.
Finally, theoretically this Letter contributes new formulas
describing diffusion kinetics in glassy polymers from which
estimates of saturation time follow. Such formulas aid
understanding and facilitate extraction of unknown material
properties through fitting. Moreover, such knowledge is
useful for predicting the lifetime and stabilization times of
polymer sensors when used in aqueous environments.
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