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Abstract. Whispering gallery mode particle sensing experiments are
commonly performed with solid resonators, whereby the sensing volume
is limited to the weak evanescent tail of the mode near the resonator
surface. In this work we discuss in detail the sensitivity enhancements
achievable in liquid droplet resonators wherein the stronger internal
fields and convenient means of particle delivery can be exploited.
Asymptotic formulae are derived for the relative resonance shift, line
broadening and mode splitting of TE and TM modes in liquid droplet
resonators. As a corollary the relative fraction of internal and external
mode energy follows, which is shown to govern achievable sensitivity
enhancements of solute concentration measurements in droplet sen-
sors. Experimental measurements of nanoparticle concentration based
on whispering gallery mode resonance broadening are also presented.

1 Introduction

Dielectric optical microresonators have attracted considerable interest in recent years
[1–4], since they can exhibit ultra-low loss modes, commonly known as whispering
gallery modes (WGMs), in which electromagnetic waves are guided by total internal
reflection around a circumference close to the surface of the resonator. Low losses,
and the associated high quality factors Q > 109, imply the intracavity photon life-
time is long, that is to say light coupled into a WGM circulates for a long time
before ultimately being lost via scattering or absorption. The highest quality factors
observed to date were achieved using silica microspheres [5,6] and crystalline CaF2
disc resonators [7], however, an abundance of alternative geometries have also been
investigated, including ring, toroidal, bottle-neck, goblet, microbubble and capillary
resonators [8–16].
The intrinsically high Q factors and small modal volumes afforded by WGMs

make them interesting for a wide range of applications, such as microlasers, optical
frequency comb generation, add-drop elements, novel light sources and fundamental
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Fig. 1. Schematic depiction of solid WGM resonators as compared to liquid droplet
resonators.

cavity quantum electrodynamical studies [17–21]. Furthermore, due to their extreme
sensitivity to refractive index changes and optical absorption of the surrounding envi-
ronment and resonator material itself, WGMs are also seeing use in chemical [22,23]
and biological sensors [1,4,24,25]. For example, Vollmer et al. recently examined the
use of silica microspheres for detection of proteins and viruses [24,26]. By measuring
the shift in WGM resonance frequency they observed proteins binding to the sphere
and their theoretical calculations have shown that single molecule detection is feasible
[27]. Interferometric methods have, moreover, been employed to detect nanoparticles
attached to a microtoroidal resonator [28,29], whilst plasmonic enhancements have
also seen recent attention [30–32]. The reader is referred to recent reviews of WGM
sensing for further examples and historical details [1,2,33].
Solid microresonators, however, suffer from a number of problems. Of particular

significance is that the majority of the WGM energy lies within the resonator, imply-
ing particles can only interact with the relatively weak evanescent tail in the external
medium. The magnitude of induced resonance perturbations, such as resonance shifts,
are comparatively small as a result. Furthermore, delivery of analyte to the sensing
region frequently relies on particle diffusion, such that long measurement times may
be required before a detection event is recorded. Moreover, in applications in which
concentration, as opposed to single particle, measurements are desired, saturation
of surface binding sites or attainment of surface equilibrium conditions is required,
hence also leading to slow measurements.
Use of a liquid droplet as a WGM microresonator offers a number of benefits to

help overcome these issues. Firstly, the analyte can easily be incorporated into the
droplet material, such that the liquid droplet simultaneously serves as sensor and
sample (see Fig. 1). In this way, analyte particles interact with the stronger portion
of the WGM leading to a higher detection sensitivity [34]. Furthermore, equilibrium
conditions are not required for many particle measurements, therefore improving mea-
surement times. Droplet resonators can also be easily created without the need for
complex fabrication procedures, whilst surface tension ensures the resonator surface is
free of surface roughness. Surface scattering losses are hence only limited by thermal
fluctuations of the surface, thus leading to high Q factors. Furthermore, liquid droplet
resonators lend themselves to integration with microfluidic analyte delivery schemes
and use on microfluidic analysis platforms, when combined with free space coupling
techniques [35]. Despite these potential advantages, no experimental demonstration
of droplet based WGM chemical detection was reported until recently, except for the
work of Kiraz and coworkers who examined “surface-standing” glycerol drops doped



Taking Detection to the Limit: Biosensing with Optical Microcavities 1973

with dye molecules for lasing experiments [17,18]. Indeed, it is only in a very recent
separate experiment, that some of the current authors have reported the first proof-
of-concept demonstration of liquid droplet WGM resonators as chemical sensors [34].
In this paper we provide theoretical predictions as to the potential sensitivity

enhancements achievable using a liquid droplet cavity relative to a solid dielectric
resonator for different sensing modalities. Moreover, we provide a first comparison
between theory and experimental measurements of WGM line broadening caused by
gold nanoparticles. In Sect. 2 we therefore briefly recall some useful properties of
WGM resonances in spherical cavities. A number of asymptotic formulae are sub-
sequently derived pertaining to the total mode energy and confinement. Section 3
proceeds to derive asymptotic results for the relative enhancement in particle induced
frequency shifts in liquid droplet WGM resonators. Line broadening and WGM split-
ting schemes are also considered, before the sensitivity gains for analyte concentration
measurements are given. An experimental demonstration of a droplet cavity sensor
wherein gold nanoparticles are introduced and the resulting linewidth perturbations
observed and compared with theoretical prediction, is then presented in Sect. 4.

2 Definition and properties of whispering gallery modes

Resonant properties of spherical microcavities can be treated within the analytic
framework of Debye-Mie theory, the details of which can be found in many classical
textbooks, e.g. [36,37]. For our derivations it is useful, however, to recall a num-
ber of properties of such resonances here. In particular, it can be shown that for a
microsphere of radius R, discrete resonances occur at frequencies ω = kc, satisfying
the condition [

n1kRhl(n1kR)
]′

hl(n1kR)
= N ν

[
n2kR jl(n2kR)

]′

jl(n2kR)
, (1)

where k = 2π/λ, λ is the optical wavelength, c is the speed of light, n1,2 is the
refractive index of the host medium and microsphere respectively (see Fig. 1), prime
notation denotes differentiation with respect to the argument of the spherical Bessel
and Hankel functions (of the first kind), jl(z) and hl(z), and NTE = 1 or NTM =
(n1/n2)

2 for transverse electric (ν = TE) or transverse magnetic (ν = TM) modes
respectively. Note that we assume isotropic media such that we can neglect non-
transverse modes and that for a mode of given order l = 1, 2, . . ., multiple solutions
to Eq. (1) exist, corresponding to different azimuthal and radial orders, as can be
indexed by the additional mode indices m = −l,−l + 1, . . . , l and p = 1, 2, . . ..
Equation (1) follows by enforcing continuity of the tangential components of the

electric and magnetic fields inside and outside the microsphere at the resonator
surface. Accordingly, the associated electric field distributions for each mode,
expressed in spherical polar field components E = (Er, Eθ, Eφ), and assuming
non-magnetic media, are given by

ETElmp(r) = A
TE
j ωμ0

⎡

⎢
⎣

0

− m
sin θf

j
l (njkr)Ylm(θ, φ)
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⎥
⎥
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, (3)
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where μ0 is the permeability of free space, f
j
l (z) = hl(z) for j = 1 (i.e. outside the

microsphere, r ≥ R) and f jl (z) = jl(z) for j = 2 (within the microsphere, r ≤ R).

The choice of f jl (z) is determined by requiring satisfaction of the radiation condi-
tion at infinity, and a physical, i.e. non-divergent, field at the resonator center. Fur-
thermore, Ylm(θ, φ) = clmP

m
l (cos θ) exp[imφ] are the spherical harmonic functions,

clm = [(2l + 1)(l − |m|)!]1/2/[4π(l + |m|)!]1/2 and Pml (cos θ) are the associated Legen-
dre polynomials. Adopting the mode normalisation whereby Aν2 = 1 (ν = TE, TM)
and letting zj = njkR, continuity of the transverse field components, Eθ and Eφ,
implies

ATE1 =
jl(z2)

hl(z1)
and ATM1 =

[z2jl(z2)]
′

[z1hl(z1)]
′ =

n22
n21

jl(z2)

hl(z1)
, (4)

where the latter equality for the TM case follows from Eq. (1).
Given the results above it is possible to determine the total electric energy of a

single resonant mode as given by

Uνlmp =
1

2
ε0

[
n21

∫ 2π

0

∫ π

0

∫ ∞

R

∣
∣Eνlmp(r)

∣
∣2 r2 sin θdrdθdφ

+n22

∫ 2π

0

∫ π

0

∫ R

0

∣
∣Eνlmp(r)

∣
∣2 r2 sin θdrdθdφ

]

, (5)

where ε0 is the permittivity of free space. Evaluation of the first (exterior) integral in
Eq. (5), however, requires care because it is divergent. In the literature, this problem
has been previously overcome, for example, using a convergence coordinate [38] or
via a reformulation in terms of a volume and surface integral [39], however, here we
adopt the more physically motivated approach of Chowdhury et al. [40]. Specifically,
since we are concerned with only the bound components of the mode, as opposed to
the radiating components, we can approximate the mode energy by performing the
exterior integral only over the region in which the evanescent field dominates. Accord-
ingly, we modify the radial integration domain to r ∈ [R,R0], where R0 represents
the first zero of the spherical Neumann function yl(n1kr).
The angular integrals of Eq. (5) can be easily performed using the result [41]

∫ π

0

[
m2

sin2 θ
Pml (cos θ)

2 +

(
d

dθ
Pml (cos θ)

)2]

sin θdθ =
l(l + 1)

2πc2lm
· (6)

Determination of the mode energy, therefore, reduces to evaluation of the set of radial
integrals:

ITEj =

∫ r2j

r1j

r2[f jl (njkr)]
2dr (7)

ITMj =

∫ r2j

r1j

l(l + 1)[f jl (njkr)]
2 +

[
d

dr

[
rf jl (njkr)

]]2
dr (8)

where now we take f1l (z) ≈ yl(z) since for high order modes (l� 1), such as WGMs,
the spherical Hankel function is dominated by the contribution from the Neumann
function for R � R0. We also note r11 = r22 = R, r12 = 0 and r21 = R0. Evaluation
of the TE integrals (Eq. (7)) can be immediately performed analytically (see e.g. [42])
yielding

ITE1 = −R
3

2
yl(z1)

2

[
1− yl−1(z1)yl+1(z1)

yl(z1)2

]
− R30
2
yl−1(n1kR0)yl+1(n1kR0) (9)
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ITE2 =
R3

2
jl(z2)

2

[
1− jl−1(z2)jl+1(z2)

jl(z2)2

]
· (10)

For high order modes we can also make the further approximation yl±1(n1kR0) ≈ 0.
Evaluation of the integrals ITMj is more involved and requires use of the recursion
relations [43]

jl−1(z) + jl+1(z) =
2l + 1

z
jl(z), (11)

ljl−1(z)− (l + 1)jl+1(z) = (2l + 1)j′l(z), (12)

(and similarly for yl(z)) to transform Eq. (8) to read

ITMj =
n2jk

2

2l + 1

[

(l + 1)

∫ r2j

r1j

r2[f jl−1(njkr)]
2dr + l

∫ r2j

r1j

r2[f jl+1(njkr)]
2dr

]

. (13)

Both integrals in Eq. (13) are of equivalent form to Eq. (7) and can hence be individ-
ually evaluated, yielding results analogous to Eqs. (9) and (10), such that

ITM1 ≈ −n
2
1k
2R3

2
y2l (z1)

[

1 +

(
y′l(z1)
yl(z1)

)2
+
3

z1

y′l(z1)
yl(z1)

− (l − 1)(l + 2)
z21

]

(14)

ITM2 =
n22k

2R3

2
j2l (z2)

[

1 +

(
j′l(z2)
jl(z2)

)2
+
3

z2

j′l(z2)
jl(z2)

− (l − 1)(l + 2)
z22

]

(15)

where, again, factors such as yl±1(n1kR0) are assumed to be negligible and the re-
cursion relations (11) and (12) have been further employed to express the result in
terms of derivatives of the spherical Bessel and Neumann functions.
Combining Eqs. (2)–(8) we can express the mode energy in the form

UTElmp =
ε0

2
(1 +RTE)n22ω2μ20l(l + 1)ITE2 (16)

UTMlmp =
ε0

2
(1 +RTM)n22l(l + 1)ITM2 (17)

where Rν = (n21/n22)(Iν1 /Iν2 )|Aν1 |2 represents the relative fraction of electric energy
stored in the host medium to that stored within the microsphere. Eqs. (9), (10), (14)
and (15) can then be directly substituted into Eqs. (16) and (17) to yield the total
electrical energy.
Simpler expressions for the mode energy can, however, be found if an asymp-

totic (l � 1) approximation is made. The results of such an approximation, when
considering only the interior mode energy, are presented in [44] for TE modes only.
We extend these results here and provide expressions for both TE and TM modes
and also include the exterior field energy, which can be significant when the mi-
crosphere and host medium have a low refractive index contrast. To do so, it is
necessary to note that an analogy can be drawn between the governing equations of
morphological dependent resonances in a sphere and the quantum mechanical radial
Schrödinger equation for a system of energy E and potential VT [45]. In particular
the analogy requires E = n2jk

2 and the total potential (including the centrifugal

barrier) is VT = k2(n21 − n2j ) + l(l + 1)/r2. Drawing the analogy with the classi-
cal resonance case we choose the decaying form of the radial function, i.e. consider
ψ(r) ∼ yl(n1kr) ∼ exp[−n1kβr] for r ≥ R. The local wavevector follows by consider-
ing β2 = E − VT [45] yielding n21k2β2 = n21k2 − l(l + 1)/r2 such that

y′l(z1)
yl(z1)

≈ −β exp[−βz1]
exp[−βz1] = −

[
l(l + 1)

z21
− 1
]1/2

. (18)
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Substituting Eq. (18) into the resonance condition (Eq. (1)) for TE and TM modes
yields, after some minor algebraic manipulations,

j′l(z2)
jl(z2)

≈

⎧
⎪⎨

⎪⎩

−n1
n2

[
l(l+1)
z21
− 1
]1/2

for TE modes

1
z2

[
n22
n21
− 1
]
− n2
n1

[
l(l+1)
z21
− 1
]1/2

for TM modes
. (19)

Ultimately, it can then be shown from Eqs. (10)–(12), (15), (18) and (19) that

ITE2 ≈ R3

2
jl(z2)

2

[

1− n21
n22
− n1

n2z2

(
l(l + 1)

z21
− 1
)1/2]

(20)

≈ R3

2
jl(z2)

2

[
n22 − n21
n22

]
(21)

and

ITM2 =
R3

2
j2l (z2)n

2
2k
2

[

1 +
n22
n21

(
l(l + 1)

z21
− 1
)
+
1

z22

(
n22
n21

n21 + n
2
2

n21
− l(l + 1)

)

−n2
(
n21 + 2n

2
2

)

n31z2

(
l(l + 1)

z21
− 1
)1/2 ]

(22)

≈ R3

2
j2l (z2)n

2
2k
2

[
n22 − n21
n21

] [
l(l + 1)

z21

n22 + n
2
1

n22
− 1
]
, (23)

where the latter equalities follow by noting the asymptotic result z2 � 1 and z2 ∼√
l(l + 1), such that terms O(z−12 ) (and larger negative powers) are dropped, whilst

terms O(1) e.g. l(l + 1)/z22 are retained. The explicit replacement l(l + 1) → z22 was
not made here (see below). It also follows that the relative fraction of energy outside
and inside the microsphere is given by

RTE ≈ n21
(n22 − n21)z1

(
l(l + 1)

z21
− 1
)1/2

(24)

RTM ≈ 3n21
(n22 − n21) z1

(
l(l + 1)

z21
− 1
)1/2/(

l(l + 1)

z21

(
n21 + n

2
2

)

n22
− 1
)

. (25)

We note a close similarity with expressions derived in [46]. Finally, we note that in
the work of Lam et al. [42] the further replacement l(l + 1) → z22 was made. In the
cases considered in this article this was found to be a poor approximation, especially
for the case of lower refractive index contrast (solid resonator case). Accordingly, we
refrain from making this approximation. If, however, the mode order l is unknown,
this can be a useful substitution to make, if more approximate estimates are sufficient.

3 Resonance perturbations for solid and liquid resonators

3.1 Reactive frequency shift

Monitoring of WGM frequency shifts has been shown to be a powerful route towards
single molecule sensing applications [4]. Within this paradigm, the spectral position of
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a WGM resonance is shifted when a molecule enters the evanescent field of the WGM
sensor, by an amount proportional to the local intensity seen by the molecule and
inversely proportional to the energy in the WGM resonant cavity. Using a first order
perturbation approach [26,47] it has been shown that the induced reactive resonance
shift is given by

Δω(rp)

ω
≈ −	[α]

2

εj |E(rp)|2∫
V
ε(r) |E(r)|2 dr , (26)

where ω is the unperturbed WGM frequency, 	[. . .] denotes the real part, α is the
excess polarisability of the perturbing particle with respect to its host medium (with
permittivity εj = n

2
j ), E(r) is the WGM field distribution, rp denotes the position of

the perturbing particle and V denotes all space. Note that since we wish to ultimately
compare liquid droplet and solid resonators, we have not specified which medium
the particle is in (i.e. j). For solid resonators the particle is located exterior to the
microsphere (j = 1), whilst for liquid droplet resonators the particle is assumed to
lie within the droplet (j = 2) as depicted in Fig. 1. Importantly, Eq. (26) is only
valid within the perturbative regime, i.e., when the induced resonance shift is smaller
than the linewidth of the WGM resonance. Care must hence be taken when applying
Eq. (26) to, for example, plasmonic nanoparticles close to resonance, which can induce
mode splitting [30]. Asymptotic results which will follow from Eq. (26) possess the
same restriction.
Examination of the denominator in Eq. (26) reveals that it can be immediately

recast in terms of the mode energy Uνlmp. Determination of the induced resonance
shifts hence now only requires evaluation of the excess particle polarisability and
the local WGM field experienced by the particle. The latter follows from Eqs. (2)
and (3), whilst calculation of the former is a relatively simple task when consider-
ing spherical particles. Within the quasi-static limit, for example, the well-known
formula α = 4πa3(εp − εj)/(εp + 2εj) can be used, where a and εp are the radius
and permittivity of the particle respectively. For larger particles, however, retarda-
tion effects become more prominent such that the more accurate Mie polarisability
α = −6πc3iTE1 /(ω3n3j ), where TE1 is the electric dipole element of the associated
T -matrix, should be used [48]. Due to material absorption the polarisability is, in
general, complex as can be seen in Table 1, which lists the complex (Mie) polarisabil-
ity of a number of particles, in air, for reference purposes.
To allow further analytic results to be found, we now restrict our attention to

fundamental WGMs (i.e. l = |m|) which are strongly confined to the equatorial plane
(z = 0) of the resonator, and assume that the perturbing particle lies within this plane.
In this case E(r) = Eνllp(r) such that, using the relations

∂
∂θ
Yll(θ, φ) =

l
tan θYll(θ, φ)

and Yll(θ, φ) = (−1)l [(2l + 1)/(4π(2l)!)]1/2 (2l − 1)!! sinl θ exp[ilφ], it follows

Δων(rp)

ω
≈ − 	[α]
4π3/2

n2j

n22

|Aνj |2[f jl (njkrp)]2
(1 +Rν)Iν2

lΓ(l + 3/2)

Γ(l + 2)
Fνl (rp), (27)

where the l factors have been rewritten in terms of the Gamma function Γ(x) for
reasons that will become apparent below, and

Fνl (rp) =

⎧
⎪⎨

⎪⎩

1 for TE modes

1
r2p

[

(l + 1)2+

(
1 +

fjl
′
(njkrp)

fjl (njkrp)

)2]

for TM modes
. (28)

To compare liquid droplet and solid resonators, we consider the particle induced
reactive shift for binding of a particle on the interior (rp = R− = R − δ, where
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Table 1. Polarisability of silver, gold, silica and polystyrene spherical particles of radius 5
and 50 nm at wavelengths of 405, 670, 1080 and 1560 nm. * Denotes values are determined
from extrapolated values of the refractive index, whilst a hyphen (-) denotes negligible values.
The plasmon resonance of silver 5 nm (50 nm) particles lies at 369 nm (417 nm). Similarly,
the plasmon resonance of gold particles lies at 507 nm (527 nm). The refractive indices for
silver and gold were determined using the Lorentz-Drude model detailed in [49]. Data for
silica and polystyrene were taken from [50] and [51] respectively.

5 nm radius 50 nm radius
Particle λ �[α] �[α] |α|2 �[α] �[α] |α|2
material (nm) (nm3) (nm3) (106 nm6) (106 nm3) (103 nm3) (1012 nm6)
Silver 1560 1616 3.680 2.614 1.655 13.53 2.741

1080 1672 7.294 2.797 1.760 40.86 3.099
670 1893 26.82 3.585 2.192 252.0 4.866
405 4325 1063 19.84 −0.1195 3851 1.485

Gold 1560 1622 6.150 2.629 1.661 16.26 2.758
1080 1686 10.47 2.843 1.776 45.10 3.156
670 2031 88.47 4.134 2.371 383.7 5.770
405 1399 927.4 2.816 0.7069 1357 2.341

Silica 1560 417.2 - 0.1740 0.4173 - 0.1742
1080 421.7 - 0.1778 0.4220 - 0.1781
670 427.0 - 0.1823 0.4272 - 0.1826
450 438.0 - 0.1918 0.4306 - 0.1868

Poly- 1560* 594.0 - 0.3528 0.5964 - 0.3557
styrene 1080 596.6 - 0.3559 0.6015 - 0.3618

670 655.9 - 0.4302 0.6723 - 0.4523
405 822.2 - 0.6761 0.8825 - 0.8042

δ is infinitesimally small) and the exterior (rp = R+ = R + δ) surface respectively.
Resonator size, R, and the resonance frequency ω are held fixed for fairer comparison.
Consequently, the WGM excited in droplet and solid resonators will be of a different
order l by virtue of the differing refractive indices. It should be noted that l must
be discrete, such that for fixed R and ω a WGM resonance will not exist in general.
However, for large spheres (for which the asymptotic treatment given here is valid),
the discrete spectrum of WGMs becomes densely packed, such that for our purposes
it is sufficient to consider a continuum of resonances. Accordingly, from Eq. (27) we
find

Δωd(R−)
Δωs(R+)

=
	[αd]
	[αs]

ld

ls

Γ(ld +
3
2 )Γ(ls + 2)

Γ(ls +
3
2 )Γ(ld + 2)

n22s
n21s

(1 +Rνs )
(1 +Rνd)

Fνld(R)
Fνls(R)

Iν2s
Iν2d

j2l (z2d)

|Aν1s|2y2l (z1s)
(29)

where the subscripts s and d have been introduced to denote the solid and droplet
resonator cases respectively. For WGMs, however, l � 1 such that we can apply the
asymptotic form of the Gamma function Γ(az+ b) ∼ √2π exp[−az](az)az+b−1/2 from
which we find

ld

ls

Γ(ld +
3
2 )Γ(ls + 2)

Γ(ls +
3
2 )Γ(ld + 2)

≈
√
ld

ls
· (30)

We thus arrive at the relative reactive shifts

Δωd(R−)
Δωs(R+)

=
	[αd]
	[αs]

√
ld

ls

n22d
n21s

(1 +RTEs )
(1 +RTEd )

n22s − n21s
n22d − n21d

(31)
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for TE modes and

Δωd(R−)
Δωs(R+)

=
	[αd]
	[αs]

√
ld

ls

n21d
n22s

(1 +Rνs )
(1 +Rνd)

n22s − n21s
n22d − n21d

n21d
n21s

[
ls(ls + 1)(n

2
2s + n

2
1s)− n22sz21s

]

[ld(ld + 1)(n22d + n
2
1d)− n22dz21d]

×
[

(ld + 1)
2 +

(
1 +

j′ld(z2d)
jld(z2d)

)2]/[

(ls + 1)
2 +

(
1 +

y′ls(z1s)
yls(z1s)

)2]

(32)

for TM modes, where Eqs. (18) and (19) can be used to evaluate the ratios

f jl
′
(z)/f jl (z).
Consideration of the relative shift for particles binding to the interior surface of

a droplet resonator (rp = R−), as compared to the shift induced when the particle
is located at the maximum of the mode profile (rp = rmax), which lies slightly away
from the droplet surface, also warrants our attention. Immediately from Eq. (27) it
follows that

Δωd(rmax)

Δωd(R−)
=
j2ld(n2dkrmax)

j2ld(n2dkR)

Fνld(rmax)
Fνld(R)

· (33)

To evaluate this relative shift, all that is therefore required is to determine rmax. To
do so, we recall that jl(z) =

√
2π/zJν(z) and employ the asymptotic expansion of

the Bessel function Jν(z) in the transition region [43], which to leading order reads
Jν(ν + ζν

1/3) ∼ 21/3ν−1/3Ai(−21/3ζ), where Ai(z) is the Airy function. Noting that
the radial extent, Δr of (low) radial order, p, WGMs satisfies [52]

Δr

R
≈ 1
2
(3π)2/3

[
p− 1/4
n2kR

]2/3
� 1, (34)

we find the dominant behaviour of the radial wave-functions is inherited from the
Bessel functions Jν(z) as opposed to the z

−1/2 factor. With these observations our
problem now becomes that of finding the maximum of Ai(z). A maximum in Ai(z)
occurs when Ai′(z) = 0, the solutions of which are well known [43]. We thus have

n2krmax = νd − 2−1/3α′1ν1/3d (35)

where α1 = −1.01879 is the first zero of Ai′(z). The first zero is taken here since this
corresponds to the global maximum of the WGM within the resonator. For the first
radial order this is the only maximum, however for higher radial orders other maxima
exist within the resonator (at positions given by Eq. (35) with the replacement α1 →
αt, t = 1, . . . , p). The field intensity at these subsidiary maxima is, however, smaller
than that given by Eq. (35).
As an illustrative example, Fig. 2a shows the calculated resonance shifts induced

in paraffin oil droplets (n2d = 1.46215) in air (n1d = 1) relative to a fused silica
solid resonator (n2s = 1.4439) in water (n1s = 1.31735) at 1560 nm, by a solid gold
nanoparticle (refractive index data were taken from [49,50,53,54]). Specifically the
relative shift Δωd(rmax)/Δωs(R+) was determined for TE modes using both the full
perturbative integral of Eq. (26) (solid lines) and asymptotic formulae (dashed lines)
derived above (Eqs. (31) and (33)) for resonators of radius ranging from 30 μm to
140 μm, corresponding to a maximum mode order of l = 800, for which good agree-
ment is seen. Since the quasi-static approximation was used to determine the particle
polarisability for this calculation, the particle size cancels in Eq. (31) and hence the
result is independent of particle size. Naturally, this result will break down for larger
particles as discussed above. From Fig. 2a it is evident that relative shifts are greater
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Fig. 2. (a) Comparison of relative TE resonance shifts for a paraffin oil liquid droplet
resonator in air (blue) compared to a fused silica solid resonator in water at 1560 nm as
found using perturbation theory (solid) and an asymptotic approximation (dashed). Green,
red and cyan curves correspond to the calculated resonance shifts for a liquid water droplet
in air relative to a fused silica solid resonator in water at 1560 nm, 1080 nm and 670 nm
respectively. Inset depicts relative percentage error between perturbative and asymptotic
calculations for paraffin and water droplets at 1560 nm. (b) As (a) except relative scattering
induced line broadening is shown. All calculations assumed a gold nanoparticle and consider
the first radial order, p = 1, WGM.

for larger spheres, as a result of the greater confinement of the mode profile within the
resonator volume. Furthermore, it is important to mention that due to the nature of
the asymptotic expansion made, the approximation becomes more accurate for larger
mode orders, that is to say for larger spheres, as shown in the inset of Fig. 2a which
plots the relative percentage error between the perturbative and asymptotic calcula-
tions for the relative resonance shift for paraffin oil droplets at 1560 nm. For the case
of a paraffin oil droplet considered here, the relative resonance shift is dictated by
both the relative particle polarisability and the mode distribution. Biosensing exper-
iments are, however, frequently performed in an aqueous environment, for example
using a fused silica resonator (hence motivating our choice of reference system), such
that we should also consider use of water droplet resonators. Accordingly, we have
also performed calculations for water droplets in air, which are also shown in Fig. 2 for
wavelengths of 670 nm, 1080 nm and 1560 nm. For computational reasons the range of
radii for perturbation theory calculations was limited to mode orders corresponding
to l ≤ 800, however good agreement is again evident. In this special case, the polar-
isability factor 	[αd]/	[αs] = 1, such that it is only the relative mode distributions
that dictate the relative resonance shift.
Finally, we briefly note that, in general, relative frequency shifts will be smaller

than that predicted by Eq. (33), since for liquid droplet resonators the particle can
be located anywhere within the sensing volume and not necessarily at the mode max-
imum. Consequently the particle experiences a weaker local field intensity in turn
reducing the induced frequency shift. As shown in Fig. 3a, for p = 1, 2 and 3 WGMs,
the relative resonance shift follows the mode profile. Mode maxima, as predicted by
Eq. (35) are also shown in Fig. 3a by vertical dashed black lines, from which only
very small discrepancies from the maximum position predicted by consideration of
the full electromagnetic modes is apparent.
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Fig. 3. (a) Comparison of the relative TE resonance shifts for a liquid water droplet in
air as compared to a fused silica solid resonator in water at 1080 nm for the p = 1, 2, 3
WGMs as a function of particle position within the droplet resonator (normalised to the
resonator radius). (b) Resonator size dependence of the concentration sensitivity gain factor

(1/RTEs )(1 +RTEs )/(1 +RTEd ) for the same resonator configurations of Fig. 2. Note that
sensitivity gain factors for the paraffin oil and water droplet are near coincident in this plot.

3.2 Line broadening and mode splitting

The linewidth, Γ, of a WGM resonance, here expressed in angular frequency units, is
dictated by losses inherently present in the system, the most dominant of which are
radiation, absorption and scattering losses i.e. Γ = Γrad +Γabs +Γsca. An equivalent,
common parameterisation used is that of the Q factor. Noting Q = ω/Γ, we can
hence write Q−1 = Q−1rad +Q

−1
abs +Q

−1
sca. Interaction between a WGM and a particle,

however, introduces additional losses, hence inducing line broadening in addition to
reactive resonance shifts discussed above. Measurements of such linewidth changes
are currently emerging as a complementary sensing mechanism to reactive shifts [55].
Accordingly, following earlier derivations, we now give expressions for the relative
broadening for a droplet versus a solid resonator.
To begin we note that particle induced scattering losses give rise to a change ΔΓsca

in the linewidth (full-width half maximum) of a resonance, given by [55]

ΔΓsca(rp)

ω
≈ n5jω

3

6πc3
|α|2|E(rp)|2∫
V
ε(r) |E(r)|2 dr · (36)

For absorption losses in the particle the broadening is similarly given by

ΔΓabs(rp)

ω
≈ εj�[α]|E(rp)|2∫

V
ε(r) |E(r)|2 dr · (37)

where �[. . .] denotes the imaginary part. Particles possessing optical gain can, inter-
estingly, also result in line sharpening. Given Eqs. (26), (36) and (37) it immediately
follows that

Δωd(R−)
Δωs(R+)

=
n31s
n32d

|αs|2
|αd|2

	[αd]
	[αs]

ΔΓscad (R−)
ΔΓscas (R+)

=
�[αs]
�[αd]

	[αd]
	[αs]

ΔΓabsd (R−)
ΔΓabss (R+)

(38)
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allowing our earlier results to be employed to consider the relative broadening effects
in liquid droplets. An example of the calculated relative scattering induced broadening
for the same systems as discussed above is shown in Fig. 2b. We note, that for the
case of a liquid water droplet (relative to a fused silica solid resonator in water),
the relative broadening is equal to the relative frequency shift, since the prefactor
in Eq. (38) is unity, that is to say the relative broadening is only a consequence of
the differing mode profiles. This arises as a consequence of the particle host medium
being the same in both cases.
Splitting of WGMs represents a further sensing modality that has been used, for

example, in high Q resonators to detect and characterise single nanoparticles and
viruses [56]. In this vein, we briefly note that expressions governing particle induced
mode splitting [56] are of identical form to Eq. (26), such that Eqs. (31) and (32)
can also be used to describe the relative frequency splitting in mode splitting based
sensing modalities.

3.3 Nanoparticle concentration

Results derived thus far have concentrated on the changes induced in a WGM reso-
nance by the presence of a single particle within the mode volume. In practice, whilst
possible, the detection of a single particle is experimentally difficult. Moreover, in
many important applications the concentration of particles in a solution is sought.
Liquid droplet resonators present a convenient platform for such concentration mea-
surements because the resonator volume can act as the particle solute [34]. Within
this context, we thus consider resonance perturbations in the presence of multiple
particles from an average point of view. When considering multiple particles, analysis
naturally becomes more involved such that results in this section merely aim to pro-
vide an indication as to potential sensitivity gains in concentration measurements in
liquid droplet resonators as compared to the solid resonator case. Potential sources
of deviation from these results will be discussed in Sect. 4.
From a microscopic point of view, the concentration, ρ, of a solution is dictated

by the number of particles Nρ within a given volume Vρ viz. ρ = Nρ/Vρ. Induced
resonance shifts and broadening are then the consequence of the aggregate effect
from all particles, which shall be assumed to be identical. Taking the reactive shift
as an illustrative example, the total resonance shift is hence given by

Δωρ
ω
≈ −	[α]

2

εj
∑Nρ
i=1 |E(ri)|2∫

V
ε(r) |E(r)|2 dr , (39)

where ri denotes the position of the ith particle and all particles are assumed to
lie within the same medium. Note that Eq. (39) also implicitly neglects coupling
between particles, however, this is generally weak for small Rayleigh scatterers and
low concentrations. Knowledge of individual particle positions, required for evaluation
of Eq. (39) is unfeasible in reality, however, insight can be gained by performing
ensemble averaging over all possible particle configurations. In the simplest case, we
assume that particles are uniformly distributed across the sensing volume (i.e. we
neglect any possible trapping forces). Under these conditions we have

〈Δωρ〉
ω

≈ −	[α]
2

εj
∑Nρ
i=1〈|E(ri)|2〉∫

V
ε(r) |E(r)|2 dr = −

	[α]
2

Nρ

Vρ

εj
∫
Vρ
|E(r)|2 dr

∫
V
ε(r) |E(r)|2 dr (40)

where the angular brackets denote ensemble averaging 〈· · ·〉 = (1/Vρ)
∫
Vρ
· · · dr, the

1/Vρ factor originates from normalisation of the probability distribution function
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Fig. 4. Sketch of the experimental setup. The droplet resonator is created from a small
liquid sample at the tip of an optical fiber or capillary. A tunable laser is focused close to
surface of the droplet using a microscope objective so as to excite whispering-gallery modes.
The directly transmitted and scattered light are collected by fast photodiodes.

governing each particle’s position and the factor Nρ arises since the particles are
assumed to be identical. Examination of the numerator of Eq. (40), and noting that
the relevant sensing volume for droplet (solid) resonators is the interior (exterior)
domain, reveals that our earlier derivations can be employed once more. In particular
we find

〈Δωρ,d〉
ω

≈ −ρ	[αd]
2

1

1 +Rνd
and

〈Δωρ,s〉
ω

≈ −ρ	[αs]
2

Rνs
1 +Rνs

, (41)

for droplet and solid resonators respectively. Defining the concentration sensitivity of
a resonator as d

dρ
〈Δωρ〉, we find that liquid droplet resonators are significantly more

sensitive than solid resonators since Rν � 1. The sensitivity gain γρ follows as

γρ =

d
dρ
〈Δωρ,d〉

d
dρ
〈Δωρ,s〉

=
1

Rνs
1 +Rνs
1 +Rνd

	[αd]
	[αs] ≈

1

Rνs
	[αd]
	[αs] · (42)

Analogous results also follow for the concentration dependence of scattering induced
line broadening with the replacement 	[α]→ −2n3jω3|α|2/(6πc3) and for absorption
broadening with the replacement 	[α] → −2�[α]. We also note that these results
are independent of azimuthal order m. In Fig. 3b we have plotted the gain factor
(1/RTEs )(1 +RTEs )/(1 +RTEd ) for both paraffin oil and water droplet resonators as
a function of resonator size. Typical enhancement factors are on the order of two
to three orders of magnitude for the range of resonator sizes considered here, with
greater sensitivity gains observed for larger resonators. This behaviour is, again, a
consequence of the greater confinement of the mode volume for larger resonators.

4 Experimental results

We have theoretically demonstrated that liquid droplet WGM resonators represent a
highly sensitive platform for measurements of solute concentration. To demonstrate
this capability we have performed experiments, whereby WGM line broadening was
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investigated, as the concentration of gold nanoparticles within the resonator was var-
ied. Nanoparticle induced reactive shifts were not considered in this work since such
measurements can suffer large noise levels arising from the dynamic motion of parti-
cles within the sensor volume. Furthermore, at present, we possess no means to easily
deliver particles from the external environment or from the liquid channel forming the
droplet to the sensing region. Figure 4 shows a schematic of the experimental setup
used wherein a visible distributed feedback diode laser (50 MHz linewidth) emitting
at ∼ 663 nm is used to interrogate a paraffin oil droplet resonator. The laser source
was driven by a precision temperature controller and low-noise current generator.
Liquid droplets were suspended, under the force of gravity, from the tip of a thin wire
and held by means of surface tension [34]. The droplet holder was fixed directly to
the optical table without any enclosing chamber. A microscope objective was then
used to focus the laser beam and the droplet carefully positioned within the beam
using a manual xyz micrometer translation stage, such that the focused light was
incident tangential to, but just beyond the droplet surface. In this manner excita-
tion of WGMs within the droplet could be achieved. Additional objective lenses were
used to collect and focus the light transmitted and scattered by the droplet resonator
onto fast photodiodes. Evaporation effects were found to be negligible for oil droplets,
however, these can be an issue for water droplets if there is a driving force towards
evaporation, i.e. the vapour pressure of the droplet in its environment is lower than
the equilibrium pressure. Evaporation of the droplet can, however, be prevented by
thermally and chemically equilibrating the droplet with its surrounding vapour, for
example, by placing it within a closed environment.
By recording the power of the light scattered by the droplets as the laser frequency

is varied (by means of a 40 ms current scan), the scattering spectrum of the droplet
resonator can be acquired. An example of a typical observed WGM spectrum, for a
500 μm radius paraffin oil droplet is shown in Fig. 5a. Two systems of modes are
visible with differing finesse. The narrow peaks (labelled 1–4 in Fig. 5a) represent
WGMs with a Q-factor > 106. Since liquid paraffin is largely transparent at visible
wavelengths, absorption losses in the cavity are small, such that the ultimate limit
to the mode linewidth is primarily determined by scattering effects due to thermal
fluctuations of the liquid surface. We note that we observe modes in the spectrum
with a higher Q, arising from lower order radial p modes, however, their transmission
and scattering signals are weak and noisy since the laser frequency jitter becomes
comparable to the mode linewidth. Utilisation of these higher Q modes is to be the
subject of future investigations.
To study the concentration sensitivity of droplet resonators we diluted a paraffin

oil mixture containing gold nanoparticles (atomic density in solution 13.41 × 1016
atoms/cc), with average radius of ∼ 1.8 nm and plasmon resonance located at
∼ 550 nm, with pure paraffin oil. Four different sample concentrations were prepared
ranging from ≈ 3%–17% by volume, from which droplet resonators were subsequently
made. The WGM spectrum was then acquired for each droplet using a wavelength
calibrated laser scan as described above, and the linewidth of a single WGM extracted
via Lorentzian fitting. Our results are shown in Fig. 5b whereby a good agreement with
a linear fit (coefficient of determination R2 = 0.99237) is evident. Noting the experi-
mentally observed slope of 0.093 GHz/%, a maximum linewidth noise of 0.025 GHz
and our detection bandwidth of 44 kHz, we find a noise-equivalent fluctuation of
10−4 GHz/Hz−1/2 leading to a signal response limit of 360 pM/Hz−1/2. Given the
small size of our analyte molecules, this value represents a good level of sensitivity if
compared to the performance of existing sensors.
Mode broadening exhibited in Fig. 5b is larger than that predicted by the results

presented in Sect. 3.3. For example, the theoretical broadening arising from absorp-
tion yields a slope of ∼ 0.017 GHz/%, whilst consideration of scattering losses yields
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Fig. 5. (a) Typical scattering spectrum of a ≈ 500 μm radius liquid paraffin droplet cavity,
exhibiting high Q WGMs (labelled peaks). (b) Measured linewidth of WGM labelled 2 in
(a) (blue data points with error bars) as a function of volume concentration of paraffin oil
containing gold NPs. Dashed line shows a linear fit with fit parameters given in the accom-
panying table. All measurements were performed using a laser wavelength scan centered at
≈ 663 nm.

∼ 0.8 × 10−6 GHz/%. Discrepancies are attributed to a number of different causes,
which we discuss briefly here. Firstly, we recall that in Sect. 3.3 trapping effects were
neglected. Given the relatively strong field gradients associated with WGMs, however,
this assumption is unlikely to hold. Accordingly, larger resonance perturbations (e.g.
reactive shift and broadening) would be expected since nanoparticles are more likely
to be located in stronger regions of the mode. In reality, particles can also be trapped
at the droplet surface by surface tension, such that a surface scattering contribution
arises in addition to the bulk contribution discussed above. For example, assuming a
uniform distribution of particles over the surface Sσ, we find for a TE mode

〈Δωσ,d〉
ω

≈ −σ 	[α]
R

1

1 +Rν
n22

(n22 − n21)
, (43)

where σ = Nσ/Sσ is the surface number density and Nσ is the number of particles
on the droplet surface. We note that this is fully analogous to results previously
derived for monolayers on the surface of solid resonators [47]. The average surface
and bulk scattering terms for droplet resonators are, therefore, of equal magnitude
(i.e. 〈Δωσ,d〉 = 〈Δωρ,d〉) when

Nσ

NT
=

[
1 +
2

3

n22
(n22 − n21)

]−1
� P, (44)

where NT = Nσ+Nρ is the total number of particles in the droplet, such that Nσ/NT
represents the fraction of particles trapped on the surface. Noting n1 < n2 we also
find, in general, that P ≤ 0.6. Similar results follow for TM modes, but are omitted
for brevity. For a paraffin oil droplet in air this corresponds to a ratio P ≈ 0.45 at
663 nm, whilst for a water droplet we find P ≈ 0.4. We also note that the average
resonance shift (and mode broadening) per particle is larger for surface scattering

than volume scattering when n2/n1 ≤
√
3, as follows from Eqs. (42) and (43), a

condition which is met in our experiments.
Additionally, nanoparticle size dispersion within the sample, can give rise to larger

experimental mode broadening, since absorption and scattering losses scale as the
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nanoparticle radius to the third and sixth power respectively. This nonlinear depen-
dence implies that linewidth measurements are more sensitive to larger particles, such
that broadening will be dominated by larger particles in our sample. In this vein, the
analytic treatment of Sect. 3.3 becomes more involved because ensemble averaging
must also be performed over the particle size distribution. Adopting a normal dis-
tribution for particle size with mean a0 and variance σ

2, we can use the quasi-static
approximation for the particle polarisability and find

〈α〉 =
(
1 +
3σ2

a20

)
α0, and 〈|α|2〉 =

(

1 +
15σ2

(
a40 + 3a

2
0σ
2 + σ4

)

a60

)

|α0|2 (45)

where α0 = 4πa
3
0(εp−εj)/(εp+2εj). Assuming particle size and position to be indepen-

dent variables, expressions given in Eq. (45) can be used in Eq. (40) and subsequent
formulae (and the broadening equivalents). For our case, for which σ ≈ 1 nm, such
calculations give slightly better agreement, with the theoretical broadening arising
from absorption now yielding a slope of ∼ 0.029 GHz/%, whilst consideration of
scattering losses yields ∼ 10× 10−6 GHz/%.
Deviations of the resonator geometry from a spherical shape can also give rise

to discrepancies between experiment and theory. In this vein, however, it is worth
mentioning that linewidth measurements are relatively robust to shape perturbations
of the resonator, such that we can neglect the slight ellipticity of the resonator arising
as a result of gravity acting on the free hanging droplet. The same can not be said,
however, for measurements of WGM reactive shifts.
Finally, in the treatment of Sect. 3.3 we considered an ensemble average of a spa-

tial random process. It is important to note, however, that particles in solution will
also be undergoing random dynamical motion (e.g. due to diffusion). Accordingly, the
resonance shift described by Eq. (39) (as well as the associated broadening) exhibit
transient behaviour during the course of a single measurement. Resonance frequency
“jitter” of this nature, in turn, can give rise to an apparent resonance broadening,
dependent on the time resolution of the measurement, in addition to that given by
scattering and absorption losses [27]. Due to the inhomogenous origin of this effect,
the resonance profile could exhibit a Gaussian lineshape when such “transit time”
broadening dominates. Potential trapping forces within the resonator can, however,
mitigate against such dynamical perturbations and act to increase the interaction
between analyte particles and the WGM, thus increasing the overall sensor sensi-
tivity. As demonstrated in [34,57] use of ring-down cavity spectroscopy (or variants
thereof) can also help avoid this effect, such that the average linewidth (and hence
broadening), can be determined independent of such frequency noise and with supe-
rior detection performance. Naturally, cavity ring-down spectroscopy also permits a
direct measurement of the optical loss in each WGM and thereby allows for a simple
measurement of absorption and scattering cross sections [58].

5 Conclusions

In this work we have discussed and assessed the potential of liquid droplet WGM
resonators as an alternative to solid microspheres in nanoparticle sensing applications.
Frequently, WGM sensors rely on detection of resonance shifts induced by an analyte
particle (or particles) of interest. In this vein, we thus derived improved asymptotic
expressions for particle induced resonance shifts of TE and TM modes in solid and
droplet resonators. Larger shifts were shown to originate for the droplet case, by
virtue of the stronger field amplitudes experienced by the perturbing particle within
the resonator. Moreover, enhancement factors were seen to increase with resonator
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size, due to the greater mode confinement that results. Due to the increasing use of
alternative sensing schemes, such as those based on line broadening or mode splitting,
we extended our derivations to consider these cases. Similar trends were also found. As
a corollary of our derivations we found asymptotic formulae describing the relative
fraction of mode energy stored outside and inside a WGM resonator, a quantity
which was found to play a crucial role in the potential sensitivity gains achievable
when making WGM based concentration measurement in liquid droplets. Finally, as
a demonstration of the particle sensing capabilities of liquid droplet resonators we
have also presented experimental results whereby the line broadening induced by a
gold nanoparticle solution of differing concentrations was investigated.
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