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Abstract: We introduce a new metric to characterise spatial variations
occurring in a time varying vector field, and we derive a rotationally
invariant formula that quantifies temporal fluctuations within a consistent
framework. So as to highlight the physics behind these metrics, both are
derived from a well–known experiment in polarimetry. The derivation yields
a set of expressions in a two–dimensional space, which is subsequently
expanded to n–dimensions for special cases. The resulting expressions of
the temporal and spatial metrics are incorporated into the electromagnetic
theory of coherence and polarisation. Examples are given in the context
of single molecule detection when measuring asymmetrically and radially
polarised beams.
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1. Introduction

The study of polarisation of light has recently attracted considerable interest due, for example,
to applications in polarisation imaging [1], focal-volume engineering [2], high resolution op-
tical microscopy [3], and molecular dynamics [4]. In particular, polarisation sensitive imaging
has shown a growth in popularity in areas such as biology and medicine. It is well known, for ex-
ample, that cancerous and healthy cells affect the polarisation of the light differently. However,
the major issue in polarisation applications is that the amount of non-redundant information
obtained is such that the data analysis usually requires highly skilled interpreters.

A common mistake in polarisation sensitive measurements is the interpretation of spatial
variations in the polarisation as depolarisation, i.e. temporal random fluctuations [5]. It is not
true for example that a field is depolarised when passing through a temporally–static scattering
material or a high numerical aperture (NA) lens. The field in both examples is actually inho-
mogeneously polarised in the spatial sense . Given that point–detectors are theoretical entities,
the mistake arises when the spatial extent of the polarisation variations happen over smaller
scales than the detection domain of the optical system, which could for example be a single
CCD pixel. A polarisation sensitive imaging system averages over the spatial extent of the de-
tector resulting in a single aggregate polarisation reading [6]. It is for this reason that a clear
difference between spatial variations and temporal fluctuations must be made.

In this paper we introduce the degree of spatial polarisation (DOSP) to account for spatial
variations in the polarisation regardless of temporal fluctuations. The resulting formula is in-
corporated into the theory of coherence and polarisation; fluctuations in the irradiance as a
result of spatial polarisation variations are discussed elsewhere [7, 8]. We also derive the de-
gree of temporal polarisation (DOTP), in a notation consistent with that of the DOSP , to account
for temporal fluctuations regardless of spatial variations. The resulting expression of the DOTP
is shown to be invariant to rotations of the co-ordinate system used. The DOTP is shown to re-
duce to the current definition of the two- [9] and three-dimensional [10] degree of polarisation
for special cases. Note that the results given here have both quantum and classical applications
given that the final expressions are written in terms of the polarisation matrix [11, 5].

The principles described above are explored using the null-polarimeter experiment shown in
Fig. 1, which can be used to measure the degree of temporal polarisation. In this experiment a
field, which is possibly fluctuating randomly in time and containing a transverse polarisation
distribution, passes through a spatially inhomogeneous analyser to then be incident on a CCD.
In the case of a collimated beam being analysed such a device can for example be realised by
a vectorial beam shaping unit [12] and a Glan-Thompson polariser. As seen next, the DOTP
and DOSP can be derived from the irradiance distribution on the CCD resulting from different
settings of the analyser. General notation is introduced next followed by the derivation of the
DOSP in section 3 and the DOTP in section 4. A series of remarks and examples are given in
section 5 and 6, respectively.

2. General notation

The derivation of the DOSP will follow from the correlation between the polarised part of dif-
ferent patches in the field, and the DOTP will be derived from finding the amount of unpo-
larised light in respect to the polarised part. We thus proceed to write the mathematical expres-
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Fig. 1. Null-polarimeter experiment.

sion of the null-polarimeter experiment in terms of the polarisation matrix and eigenspaces.
The use of the eigenspaces allows one to control the settings of the analyser. Given that
depolarisation is a linear effect [13] we may represent the field incident on the analyser
Γ j = Γ(r j,r j,0) = 〈�E(r j, t)⊗�E†(r j, t+τ)〉 for τ = 0, with ⊗ representing the Kronecker prod-
uct and 〈...〉 denoting time average (wide sense stationary random processes are assumed), as a
sum of two matrices:

Γ j = Γp
j +Γu

j , (1)

where Γu
j = α jI represents the temporally unpolarised portion of the field, and Γp

j is a matrix of
rank one representing the part of the field that it is totally temporally polarised, i.e. a pure state.
Here r j = (x j,y j,z j) is a position vector denoting a point in the field, and α j is the magnitude
of the temporally unpolarised part of the field at that point.

The distribution of the irradiance detected by the CCD is described by [14, 15]

Tr
[
G̃iΓ jG̃

†
i

]
= Tr

[
G̃iΓ

p
jG̃

†
i

]
+Tr

[
G̃iΓu

jG̃
†
i

]
, (2)

where G̃i = G̃(ri) denotes a matrix describing the transmission of a field through the system,
i.e. polarisation analyser, and Tr is the trace operator. Here ri = (xi,yi,zi) is a position vector
denoting a point in the system. The .̃ notation signifies a dimensionless quantity throughout this
paper. The transmission can thus be nulled by matching the eigenvectors of G̃i to those of Γp

j

and choosing the eigenvalues of the former such that zero transmittance occurs. Γp
j is hence

written as
Γp

j = X̃ jΛ
p
jX̃

†
j ,

where X̃ j are the eigenvectors associated with the jth patch of the field, and Λp
j is a diagonal

matrix whose elements are the eigenvalues of Γp
j . The spatially inhomogeneous analyser is then

defined as
G̃i = X̃iΦ̃iX̃

†
i , (3)

where X̃i are the eigenvectors associated with the ith patch of the analyser and Φ̃i is a diagonal
matrix whose elements are the eigenvalues of G̃i. It then follows that Γp

j can be extinguished

for i = j if the eigenvalues of G̃i are defined as

Φ̃i =

√
λ̃ p

i I− Λ̃p
i , (4)
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where λ̃ p
i = λ p

i /Tr
[
Γp

i

]
. Here λ p

i is the non-zero eigenvalue of Γp
i and Λ̃p

i is a diagonal matrix
whose only non–zero element is λ̃ p

i . Since G̃ is by definition dimensionless, it is necessary for
Φ̃i and X̃i, to also be dimensionless.

Notice that for practical purposes, one would assume that the field represented by Γ j pos-
sesses a number of homogeneously polarised patches indexed by j, and the polarisation anal-
yser represented by G̃i possesses a number of homogeneously analysing patches indexed by i.

3. Degree of spatial polarisation

The degree of spatial polarisation is derived by finding the correlation between the polarised
part of different patches in the field. For this Eqs. (3) and (4) are substituted into the polarised
part of the field:

Ip(ri,r j) = Ip
(i, j) = Tr

[
G̃iΓ

p
jG̃

†
i

]
, (5)

to yield

Ip
(i, j) = Tr

[
Γ̃p

i

]
Tr

[
Γp

j

]
−Tr

[
Γp

j Γ̃
p
i

]
(6)

with the aid of the additive and multiplicative property of the trace, i.e. Tr [A+B] = Tr [A] +
Tr [B] and Tr [AB] = Tr [BA], respectively. Using Eq. (1), and the following identities (see Eqs.
25 and 26 in the Appendix)

Tr [Γ j]−λ j = α j(Tr [I]−1), (7)

Tr
[
Λ̃iΛ j

]
= λ̃iλ j + α̃iα j(Tr [I]−1), (8)

where Λ j = Λp
j +α jI is a diagonal matrix containing the eigenvalues of Γ j and λ j = λ p

j +α j,
Eq. (6) is rewritten as

Ip
(i, j) = Tr

[
Λ̃iΛ j

]−Tr
[
Γ̃iΓ j

]
. (9)

Equation (9) represents the contribution of the polarised part of the field to the irradiance at the
CCD when analysing the field using the polarisation state of a different patch as a reference.
What was a point in the system (ri) is now a point in the field that is being used as reference.
Equation (9) thus expresses the correlation between the polarised part of different points in the
field in terms of irradiance. It then follows that normalising Eq. (9) by the total irradiance at
each point and subtracting it from unity for convention yields the degree of spatial polarisation:

Ps
(i, j) ≡ 1− Tr [ΛiΛ j]−Tr [ΓiΓ j]

Tr [Γi]Tr [Γ j]
. (10)

The derivation considers a nulling experiment that results in minimising the fringe visibility in
a Young interferometer. As opposed to the conventional maximisation of the visibility in the
fringes. Equation (10) is a measure of the similarity between the polarisation states present in
a field regardless of the presence of temporal fluctuations. Given that the ith and jth patches of
the field are normalised, it follows that 0 ≤ Ps ≤ 1, where Ps = 1 and Ps = 0 correspond to fully
spatially polarised and spatially unpolarised fields, respectively.

In the case of a field absent of unpolarised part, i.e. fully temporally polarised, Eq. (10) is
equivalent to

Ps
(i, j) =

∣∣Tr
[
Γ(i, j)

]∣∣2
Tr [Γi]Tr [Γ j]

,

or, in more conventional notation, to

Ps(ri,r j,0) =

∣∣Tr [Γ(ri,r j,0)]
∣∣2

Tr [Γ(ri,ri,0)]Tr [Γ(r j,r j,0)]
. (11)
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Given in addition that Tr[Γ(ri,r j,τ)] = 〈�E†(ri, t) ·�E(r j, t − τ)〉 for this particular case, one can
also write

Ps(ri,r j,0) =
〈�E†(ri, t) ·�E(r j, t)〉2

〈�E(ri, t)〉2〈�E(r j, t)〉2
= cos2 θ(i, j), (12)

where θ(i, j) is the angle in Hilbert space, which is related to the orthogonality between polari-
sation states.

The derivation of the degree of spatial polarisation originated from a two-dimensional sce-
nario; however, Eq. (12) is proof that Eq. (11) can be applied to three-dimensional fields as
opposed to existing two-dimensional metrics [16, 17].

4. Degree of temporal polarisation

The degree of temporal polarisation is derived by considering the irradiance described in Eq. (2)
when setting i = j. This setting, due to the chosen eigensystems, extinguishes the polarised part
of the field yielding

Tr
[
G̃ jΓ jG̃

†
j

]
= Tr

[
G̃ jΓu

jG̃
†
j

]
(13)

at the CCD. By using Eqs. (3) and (4), Eq. (13) can be rewritten as

Tr
[
G̃ jΓ jG̃

†
j

]
= α jλ̃ p

j (Tr [I]−1) =
λ̃ p

j Tr
[
Γu

j

]

q
, (14)

where

q =
Tr [I]

Tr [I]−1
.

Equation (1) is then written using Eq. (14) and the sum property of the trace as

Tr
[
Γp

j

]
= Tr [Γ j]− q

λ̃ p
j

Tr
[
G̃ jΓ jG̃

†
j

]
. (15)

Since Eq. (1) can also be written using the constituent eigensystems as Γ j = X̃ j(Λ
p
j +α jI)X̃

†
j ,

the eigenvectors of the polarised part of the field are seen to be the same as those of the total
field. Consequently, Eq. (15) can be rewritten as

Tr
[
Γp

j

]
= Tr [Γ j]− q

λ̃ p
j

Tr
[
Λ j(λ̃ p

j I− Λ̃p
j)
]
. (16)

It can then be shown (see Eq. 27 in the Appendix) that the second term in the right hand side of
Eq. (16) can be rewritten as

Tr
[
Λ j(λ̃ p

j I− Λ̃p
j)
]
= λ̃ p

j (Tr [Λ j]−λ j), (17)

where λ j is the largest eigenvalue of Γ j.
Equation (17) substituted into Eq. (16) represents the irradiance of the polarised part of the

field in terms of the polarisation matrix. It thus follows that [9] the ratio of the resulting equation
and the total irradiance (Tr [Γ j]) yields the degree of temporal polarisation:

Pt
n(r j) = 1− q(Tr [Γ j]−λ j)

Tr [Γ j]
, (18)

where n denotes the dimensionality of the field. Equation (18) quantifies the temporal random
fluctuations in a field regardless of the transverse spatial distribution of the polarisation. Note
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that because the eigenvalues and the trace of a matrix are invariant to rotation, Pt
n is thus invari-

ant to rotations of the co-ordinate system.
Equation (18) can be applied to two-dimensional fields in general and to three-dimensional

fields when two eigenvalues of Γ j are equal. For two-dimensional fields Eq. (18) becomes

Pt
2(r j) =

λ p
j

λ p
j +2α j

=

√
1− 4DetΓ j

(Tr [Γ j])2 , (19)

which is equivalent to Eq. (5.14) of Ref. [9], whilst when appropriate to three-dimensional
fields it becomes

Pt
3(r j) =

λ p
j

λ p
j +3α j

=

√
3Tr

[
Γ2

j

]

2(Tr [Γ j])2 − 1
2
, (20)

which is again equivalent to Eq. (18) of Ref. [10]. Applications of Eq. (18) in quantum optics
have been discussed before [18].

It can be seen from Eqs. (19) and (20) that 0 ≤ Pt(r j) ≤ 1 for every j. When the beam is
fully temporally polarised α j equals to zero, and hence Pt(r j) equals to one. For a temporally
unpolarised beam, λ p

j equals to zero and consequently Pt(r j) equals to zero.

5. Remarks

As a remark note that Eq. (9) represents an irradiance measurement in terms of polarisation
matrices; to consider an optical element instead, this equation can be rewritten as

Ip
( j, j) = Tr

[
Φ̃ jΛ j

]−Tr
[
J̃ jΓ j

]
, (21)

where J̃ j is a matrix representing a non–depolarising polarisation optical element, and Φ̃ j is a
matrix containing in the diagonal the eigenvalues of J̃ j.

Also note the similarity between Eq. (11) and the degree of spatial coherence given by [9]

μ(ri,r j,τ) =
Tr [Γ(ri,r j,τ)]√

Tr [Γ(ri,ri,0)]
√

Tr [Γ(r j,r j,0)]
, (22)

where τ is a time difference at an observation point resulting from the optical path difference
between the points determined by ri and r j. Squaring Eq. (22), substituting it into Eq. (11) and
setting τ equal to zero, one obtains

Ps(ri,r j,0) = μ2(ri,r j,0). (23)

This equation shows that the DOSP can be measured using the interference pattern produced by
a two pinhole interferometer. In the case of measuring an incoherent field, Eq. (23) holds only
when the optical paths between the observation point and the pinholes are equal. For coherent
fields, this equation holds when the optical path difference is a multiple of the wavelength.

6. Example

To illustrate the DOSP and DOTP , consider the field distribution at the back focal plane of
a high NA lens produced by a single molecule. It is assumed that the molecule is on-axis,
in focus, fluorescent, its dipole moment is (1,0,1)/

√
3, exhibits circular dichroism, and it can

undergo stationary random temporal fluctuations (angular wobble). The analytical form of the
field when illuminating the molecule with unpolarised light can thus be written as [19]

�E(r, t) = L(r) ·
[

1
|r|3 r× (r×p′(t))

]
, (24)
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Fig. 2. (a) Polarised part of the field distribution produced by a single molecule whose
dipole moment is (1,0,1)/

√
3 and exhibits circular dichroism. The irradiance is represented

by the grayscale in positive, and the ellipses depict the polarised part of the field at the given
points. Figures (b) and (c) show the distribution of the azimuthal angle and the ellipticity
of the polarisation, respectively.

where L(r) is the generalised Jones matrix of the lens in Cartesian coordinates, and p′(t) =
p+Δp(t) is the dipole moment p of the molecule perturbed by a temporal random fluctuation
Δp(t).

The field distribution produced by the molecule in the back focal plane of a high NA lens is
shown in Fig. 2(a). This distribution is obtained from the polarisation matrix, which is found
using Eq. (24). The grayscale represents the irradiance in positive (white equals to bright). The
ellipses represent the polarisation state of the field and its magnitude at the given points. These
ellipses are plotted using the azimuth angle and ellipticity calculated from the polarisation ma-
trix. Figures 2(b) and 2(c) show the transverse distribution of the field decomposed in azimuth
angle and ellipticity, respectively. Note that Fig. 2 can be computed regardless of the degree of
temporal polarisation since only the polarised part of the field is needed to be generated.

The DOSP can also be calculated regardless of the DOTP of the beam due to the generality
of Eq. (10). The DOSP of such a field distribution is depicted in Fig. 3. Given that Eq. (10) is a
function of two sets of spatial co-ordinates, the figure is built from the subfigures corresponding
to the coordinates ri = (xi,yi,zi = 0) positioned on the coordinates r j = (x j,y j,z j = 0). By
definition, the point denoted by ri in the subfigure equals to one if the subfigure is positioned
at ri = r j. The visualisation of the DOSP aims to the localisation of the regions in the field
that increase the effect of the spatial variations on the measurement of temporal fluctuations.
Quantification of the DOSP leads to the possession of a confidence level.

Consider the examples shown in Fig. 4 to illustrate the influence of the DOSP on the measure-
ment of the DOTP . This figure shows column-wise three examples with different amounts of
temporal fluctuations. The case when the molecule is static is shown in the left column, the
centre and right columns depict the cases when angular perturbations are added to the position
of the molecule; the greatest angular perturbation is shown in the column on the right. The first
row depicts the dipole moment of the molecule at specific times. The black dot represents the
value of the initial dipole moment in a Cartesian coordinate system, and the red dots represent
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Fig. 3. Degree of spatial polarisation of the field produced by a single molecule at the back
focal plane of a high NA lens. The figure consists of subfigures that correspond to the
coordinates ri = (xi,yi,zi = 0) centred on the coordinates r j = (x j,y j,z j = 0).

a) b) c)

d) e) f)

g) h) i)

z

x y

Fig. 4. Effect of angular perturbations on the DOTP when averaging over finite areas.
The examples are given column–wise for different amounts of angular pertur-
bation increasing from left to right (left column being the static case). Top row
depicts the dipole moment of the molecule at specific times. The black dot repre-
sents the initial dipole moment and the red ones depict the subsequent ones. The
middle row is the DOTP measuring with a CCD formed of infinitesimally small
pixels. Bottom row is the DOTP measured using a CCD whose pixel size is 1/8th
of the total area of the beam.
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subsequent dipole moments. The second row depicts the DOTP when measured with a CCD
having infinitesimally small pixels. Notice that due to the polarisation distribution present in
the beam, the DOTP is more susceptible to changes in regions where the field is less homoge-
neous. The third row is the “measured DOTP” — obtained when averaging the field over pixels
of finite size. The size of the pixels is assumed to be one eighth of the total area of the beam,
e.g. small beam diameter or low quality camera. For pixels of smaller diameter, the distribution
profile of the DOTP remains the same but the range decreases. The results from the static case
(left column) shows clearly the effect of the spatial distribution of the field on the DOTP . For
a static dipole, the DOTP is expected to be constant as illustrated in Fig. 4(d). Consequently, as
shown in Fig. 4(g), a CCD camera of finite pixel size measures erroneously the field as being
partially polarised. Note however that if the DOSP and DOTP are measured in the image plane,
this fact implies that the polarisation of the field is varying within the diffraction limit of the
system.

A confidence level on the measurement of the DOTP can be established using the DOSP
to design beams or in measurements if a priori information is present. For example, note the
similarity between the measured DOTP (bottom row) and the DOSP (Fig. 3). In the static dipole
case, the measured DOTP (Fig. 4g) is closer to unity on the left side of the beam where the
DOSP is also close to unity. As the fluctuations of the dipole increase, the distribution of the
measured DOTP results from the combination of the DOTP, corresponding to infinitesimal pixel
size, and the DOSP . However, the measured DOTP always yields the real value of the DOTP in
areas where the DOSP is unity. A confidence level can thus be established using, for example,
the mean value of each subfigure in the DOSP . In the case of a beam exhibiting symmetry
such as a radially polarised beam, the DOSP inherits the symmetry as shown in Fig. 5. In this
case, the contribution of the spatial variations to the DOTP is the same across most of the beam.
The only point where the DOSP is different is at the centre point of the beam where the DOSP
cannot be defined due to the phase singularity. If a finite–sized pixel is centred at this point,
the measured DOTP results as fully unpolarised independently of the size of the pixel. Notice
that one can measure the DOSP of a beam using a high-resolution system sacrificing acquisition
speed, assess the confidence level, and thus optimise the speed of the system by adjusting the
resolution.

7. Conclusion

In summary, we have derived a formula using the polarisation matrix that describes the degree
of temporal polarisation in an optical system of arbitrary dimensions. The degree of tempo-
ral polarisation, which is rotationally invariant, was shown to reduce to the two- and three-
dimensional versions of the well-known degree of polarisation when the dimensions are appro-
priately restricted. We have also introduced a new metric that describes the degree of spatial
polarisation in a field regardless of temporal fluctuations present. This metric enables one to
build more realistic models to describe light–matter interactions, such as molecular dynamics
or metamaterial characterisation. It is also possible to use this metric to evaluate beams having
different spatially inhomogeneous polarisation distributions, such as the much researched donut
or singular beams. The formulation for both spatial and temporal degree of polarisation were
shown to be consistent with the corresponding quantities defined in optical coherence theory.
Finally, examples were given in the context of single molecule detection to illustrate the DOSP
and the DOTP when measuring asymmetrically and radially polarised beams.
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Fig. 5. Degree of spatial polarisation of the field produced by a radially polarised beam. The
figure consists of subfigures that correspond to the coordinates ri = (xi,yi,zi = 0) centred
on the coordinates r j = (x j,y j,z j = 0).

8. Appendix

The following is the proof of Eq. (7), which was used to rewrite Eq. (6). Substituting Γ j =

X̃ j(Λ
p
j +α jI)X̃

†
j and λ j = λ p

j +α j into

Tr [Γ j]−λ j = α j(Tr [I]−1) (25)

yields

Tr
[
Λp

j +α jI
]
−λ p

j −α j = α j(Tr [I]−1),

which can be expanded using the additive property of the trace to obtain

Tr
[
Λp

j

]
+α jTr [I]−λ p

j −α j = α jTr [I]−α j,

and to finally yield
λ p

j = λ p
j

since Tr
[
Λp

j

]
= λ p

j .

The following is the proof of Eq. (8), which was also used to rewrite Eq. (6). Substituting
Λ = Λp +αI and λ = λ p +α into

Tr
[
Λ̃iΛ j

]− λ̃iλ j = α̃iα j(Tr [I]−1) (26)

and rearranging yields

Tr
[
(Λ̃p

i + α̃iI)(Λ
p
j +α jI)

]
= (α̃i + λ̃ p

i )(α j +λ p
j )+ α̃iα j(Tr [I]−1),
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which can then be simplified using the additive property of the trace to obtain

Tr
[
Λ̃p

i Λp
j

]
+ α̃iTr

[
Λp

j

]
=−α jTr

[
Λ̃p

i

]
+ λ̃ p

i λ p
j +α jλ̃ p

i + α̃iλ p
j

and to finally yield
λ̃ p

i λ p
j = λ̃ p

i λ p
j

since Tr
[
Λp

j

]
= λ p

j .

The following is proof of the equivalence claimed in Eq. (16). Substituting Λ = Λp+αI into
the right hand side of

Tr
[
Λ j(λ̃ p

j I− Λ̃p
j)
]
= λ̃ p

j (Tr [Λ j]−λ j) (27)

and using the additive property of the trace on the left hand side yields

λ̃ p
j Tr [Λ j]−Tr

[
Λ jΛ̃

p
j

]
= λ̃ p

j (λ
p
j +2α j − (λ p

j −α j)),

which can be simplified by algebraic manipulation after substituting Λ = Λp +αI in the left
hand side to obtain

λ̃ p
j (λ

p
j +2α j)− λ̃ p

j (λ
p
j +α j) = λ̃ p

j α j

λ̃ p
j α j = λ̃ p

j α j.
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